RESEARCH ON LVRT CONTROL MODE AND CONTROL PARAMETER IDENTIFICATION OF ELECTROMECHANICAL TRANSIENT MODEL OF PV INVERTER BASED ON MODE ALGORITHM

Xu Hengshan, Wang Siwei, Zhang Xujun, Li Chenyang, Huang Yongzhang

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (11) : 308-318.

PDF(2870 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2870 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (11) : 308-318. DOI: 10.19912/j.0254-0096.tynxb.2024-1242

RESEARCH ON LVRT CONTROL MODE AND CONTROL PARAMETER IDENTIFICATION OF ELECTROMECHANICAL TRANSIENT MODEL OF PV INVERTER BASED ON MODE ALGORITHM

  • Xu Hengshan1, Wang Siwei1, Zhang Xujun2, Li Chenyang1, Huang Yongzhang3
Author information +
History +

Abstract

To address the difficulty in obtaining control methods and parameters for low voltage ride through of photovoltaic inverters, which leads to limitations in establishing precise simulation models and analyzing grid-connection characteristics, a method for identifying the control methods and parameters of photovoltaic inverter electromechanical transient models is proposed based on the multi-objective differential evolution algorithm. First, the hardware in the loop test of the PV controller was carried out based on RT-LAB to obtain the LVRT cases required for parameter identification. Second, key points in the cases are extracted to establish the identification dataset, and the control parameters of the inverter in the specified power and specified current modes are identified separately using the MODE algorithm. An adaptive parameter tuning strategy and non-dominated sorting are introduced to improve the algorithm performance. Finally, the simulation results of LVRT cases under different control modes are compared to determine the control mode of the inverter. The results show that the proposed method can accurately identify the control methods and parameters of the photovoltaic inverter electromechanical transient model.

Key words

photovoltaic power generation / parameter identification / electric inverters / evolutionary algorithms / multiobjective optimization / low- voltage ride-through

Cite this article

Download Citations
Xu Hengshan, Wang Siwei, Zhang Xujun, Li Chenyang, Huang Yongzhang. RESEARCH ON LVRT CONTROL MODE AND CONTROL PARAMETER IDENTIFICATION OF ELECTROMECHANICAL TRANSIENT MODEL OF PV INVERTER BASED ON MODE ALGORITHM[J]. Acta Energiae Solaris Sinica. 2025, 46(11): 308-318 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1242

References

[1] 刘蕊, 吴奎华, 冯亮, 等. 含高渗透率分布式光伏的主动配电网电压分区协调优化控制[J]. 太阳能学报, 2022, 43(2): 189-197.
LIU R, WU K H, FENG L, et al.Voltage partition coordinated optimization control of active distribution network of high penetration distributed PVs[J]. Acta energiae solaris sinica, 2022, 43(2): 189-197.
[2] 马铭遥, 熊鹏博, 孟雪松, 等. 基于光伏并网逆变器直流过压故障的暂态分析及故障成因定位[J]. 高电压技术, 2021, 47(1): 187-197.
MA M Y, XIONG P B, MENG X S, et al.Transient analysis and fault cause location of DC overvoltage fault based on photovoltaic grid connected inverter[J]. High voltage engineering, 2021, 47(1): 187-197.
[3] 金宇清, 鞠平, 潘学萍, 等. 光伏逆变器控制参数的分步辨识方法[J]. 电网技术, 2015, 39(3): 594-600.
JIN Y Q, JU P, PAN X P, et al.A stepwise method to identify controller parameters of photovoltaic inverter[J]. Power system technology, 2015, 39(3): 594-600.
[4] 孔祥平, 袁宇波, 阮思烨, 等. 面向故障暂态建模的光伏并网逆变器控制器参数辨识[J]. 电力系统保护与控制, 2017, 45(11): 65-72.
KONG X P, YUAN Y B, RUAN S Y, et al.Controller parameter identification of the grid connected PV inverter for fault transient modeling[J]. Power system protection and control, 2017, 45(11): 65-72.
[5] 王哲, 吕敬, 吴林林, 等. 基于Vector Fitting的光伏并网逆变器控制器参数频域辨识方法[J]. 电力自动化设备, 2022, 42(5): 118-124.
WANG Z, LYU J, WU L L, et al.Frequency-domain identification method for controller parameters of photovoltaic grid-connected inverter based on Vector Fitting[J]. Electric power automation equipment, 2022, 42(5): 118-124.
[6] 徐恒山, 李文昊, 赵铭洋, 等. 基于最小二乘和自适应蛇优化算法的直驱风机LVRT特性辨识[J]. 电力系统及其自动化学报, 2024, 36(2): 55-66.
XU H S, LI W H, ZHAO M Y, et al.Identification of LVRT characteristic of direct-driven wind turbine generator based on LS and ASO algorithm[J]. Proceedings of the CSU-EPSA, 2024, 36(2): 55-66.
[7] 欧阳森, 马文杰. 考虑电压故障类型的光伏逆变器低电压穿越控制策略[J]. 电力自动化设备, 2018, 38(9): 21-26.
OUYANG S, MA W J.Low voltage ride through control strategy of photovoltaic inverter considering voltage fault type[J]. Electric power automation equipment, 2018, 38(9): 21-26.
[8] 葛路明, 曲立楠, 陈宁, 等. 光伏逆变器的低电压穿越特性分析与参数测试方法[J]. 电力系统自动化, 2018, 42(18): 149-156.
GE L M, QU L N, CHEN N, et al.Characteristic analysis of low voltage ride-through and parameter test method for photovoltaic inverter[J]. Automation of electric power systems, 2018, 42(18): 149-156.
[9] 林伟芳, 任晓钰, 张桂红, 等. 考虑功角稳定和暂态过电压的新能源电压穿越控制参数优化[J]. 电网技术, 2023, 47(4): 1323-1330.
LIN W F, REN X Y, ZHANG G H, et al.Optimization of voltage ride-through control parameters of renewable energy considering power angle stability and transient overvoltage[J]. Power system technology, 2023, 47(4): 1323-1330.
[10] 王潇桐, 王彤, 邓俊, 等. 光伏逆变器机电暂态模型的控制模式及参数一体化辨识策略[J]. 电网技术, 2023, 47(9): 3547-3558.
WANG X T, WANG T, DENG J, et al.Control mode and parameter integration identification of photovoltaic inverter electromechanical transient model[J]. Power system technology, 2023, 47(9): 3547-3558.
[11] 韩平平, 范桂军, 孙维真, 等. 基于数据测试和粒子群优化算法的光伏逆变器LVRT特性辨识[J]. 电力自动化设备, 2020, 40(2): 49-54.
HAN P P, FAN G J, SUN W Z, et al.Identification of LVRT characteristics of photovoltaic inverters based on data testing and PSO algorithm[J]. Electric power automation equipment, 2020, 40(2): 49-54.
[12] 黄桦, 潘学萍, 李佳伟, 等. 直驱永磁风电机组LVRT模型参数的整定方法与实测验证[J]. 电力自动化设备, 2019, 39(4): 155-160.
HUANG H, PAN X P, LI J W, et al.Parameter setting method and measurement verification of LVRT model for direct drive permanent magnet wind turbine generator[J]. Electric power automation equipment, 2019, 39(4): 155-160.
[13] 徐恒山, 李颜汝, 李文昊, 等. 融合寻优算法的双馈风力机控制参数分步辨识方法[J]. 太阳能学报, 2024, 45(4): 247-256.
XU H S, LI Y R, LI W H, et al.Stepwise identification method of control parameters for DFIG based on composite optimization algorithm[J]. Acta energiae solaris sinica, 2024, 45(4): 247-256.
[14] 徐恒山, 朱士豪, 黄永章, 等. 基于GRU-IPSO算法的双馈风机控制参数辨识[J]. 华北电力大学学报(自然科学版), 2025: 52(4): 70-80.
XU H S, ZHU S H, HUANG Y Z, et al.Control parameter identification of doubly-fed fan based on GRU-IPSO algorithm[J]. Journal of North China Electric Power University (natural science edition), 2025: 52(4): 70-80.
[15] 徐岩, 靳伟佳, 朱晓荣. 基于遗传粒子群算法的光伏并网逆变器参数辨识[J]. 太阳能学报, 2021, 42(7): 103-109.
XU Y, JIN W J, ZHU X R.Parameter identification of photovoltaic grid-connected inverter based on GAPSO[J]. Acta energiae solaris sinica, 2021, 42(7): 103-109.
[16] 肖怀硕, 李清泉, 张岩, 等. 基于非支配排序遗传改进算法的故障限流器的优化配置[J]. 电网技术, 2016, 40(8): 2444-2450.
XIAO H S, LI Q Q, ZHANG Y, et al.Optimization of fault current limiter configuration based on improved NSGA-2[J]. Power system technology, 2016, 40(8): 2444-2450.
[17] 袁桂丽, 贾新潮, 陈少梁, 等. 虚拟电厂源-荷协调多目标优化调度[J]. 太阳能学报, 2021, 42(5): 105-112.
YUAN G L, JIA X C, CHEN S L, et al.Multiobjective optimal dispatch considering source-load coordination for virtual power plant[J]. Acta energiae solaris sinica, 2021, 42(5): 105-112.
[18] VESTERSTROM J, THOMSEN R.A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems[C]//Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753). Portland, OR, USA,2004: 1980-1987.
[19] GB/T 37408—2019, 光伏发电并网逆变器技术要求[S]
GB/T 37408—2019, Technical requirements for photovoltaic gird-connected inverter[S].
[20] MOHSENI A, MOHAJER YAMI S, SHAYEGANI AKMAL A A. Sensitivity analysis and stochastic approach in study of transient recovery voltage with presence of superconducting FCL[C]//2011 IEEE Electrical Power and Energy Conference. Winnipeg, MB, Canada, 2011: 479-484.
[21] GB/T 32892—2016, 光伏发电系统模型及参数测试规程[S].
GB/T 32892—2016, Model and parameter test regulation for photovoltaic power system[S].
[22] 刘辉, 于思奇, 孙大卫, 等. 构网型变流器控制技术及原理综述[J]. 中国电机工程学报, 2025: 45(1): 277-297.
LIU H, YU S Q, SUN D W, et al.Summary of control technology and principle of grid converter[J]. Proceedings of the CSEE, 2025: 45(1): 277-297.
[23] GALLANO R J C, NERVES A C. Multi-objective optimization of distribution network reconfiguration with capacitor and distributed generator placement[C]//TENCON 2014 - 2014 IEEE Region 10 Conference. Bangkok, Thailand, 2014: 1-6.
[24] 陈磊, 郑燊聪, 蒋禹齐, 等. 基于改进混沌布谷鸟算法的风电场多机等值参数辨识方法[J]. 电力系统保护与控制, 2023, 51(20): 99-106.
CHEN L, ZHENG S C, JIANG Y Q, et al.Identifying multi-machine equivalent parameters of wind farms based on an improved chaotic cuckoo search algorithm[J]. Power system protection and control, 2023, 51(20): 99-106.
PDF(2870 KB)

Accesses

Citation

Detail

Sections
Recommended

/