STUDY ON CONTACT PRESSURE DISTRIBUTION OF GAS DIFFUSION LAYER (GDL) IN PEMFCS UNDER MECHANICAL DESIGN PARAMETER UNCERTAINTIES

Chen Bo, Li Yamin, Jia Meng, Yang Zhijun

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (11) : 144-153.

PDF(2294 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2294 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (11) : 144-153. DOI: 10.19912/j.0254-0096.tynxb.2024-1256

STUDY ON CONTACT PRESSURE DISTRIBUTION OF GAS DIFFUSION LAYER (GDL) IN PEMFCS UNDER MECHANICAL DESIGN PARAMETER UNCERTAINTIES

  • Chen Bo, Li Yamin, Jia Meng, Yang Zhijun
Author information +
History +

Abstract

To reduce the stringent mechanical maintenance requirements of proton exchange membrane fuel cells (PEMFCs), improve their performance, and extend the service life of their components, this paper examines uncertainties in three nominally deterministic mechanical design parameters: gas diffusion layer (GDL) thickness, GDL porosity, and bipolar plate bending radius. The study evaluates the influence of these uncertainties on contact pressure based on the Gaussian probability method. It explores the correlation between the macroscopic scales, including GDL thickness, GDL porosity, and bipolar plate bending radius, and the microscopic scale of GDL contact pressure. The study analyzes the uncertainties in mechanical design parameters and their effects on contact pressure and verifies the reliability of GDL dimension through integrated uncertainty modeling and simulation.

Key words

proton exchange membrane fuel cells (PEMFCs) / gas diffusion layer / porosity / bipolar plates / contact pressure

Cite this article

Download Citations
Chen Bo, Li Yamin, Jia Meng, Yang Zhijun. STUDY ON CONTACT PRESSURE DISTRIBUTION OF GAS DIFFUSION LAYER (GDL) IN PEMFCS UNDER MECHANICAL DESIGN PARAMETER UNCERTAINTIES[J]. Acta Energiae Solaris Sinica. 2025, 46(11): 144-153 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1256

References

[1] KLEEMANN J, FINSTERWALDER F, TILLMETZ W.Characterisation of mechanical behaviour and coupled electrical properties of polymer electrolyte membrane fuel cell gas diffusion layers[J]. Journal of power sources, 2009, 190(1): 92-102.
[2] PAN M Z, PAN C J, LI C, et al.A review of membranes in proton exchange membrane fuel cells: Transport phenomena, performance and durability[J]. Renewable and sustainable energy reviews, 2021, 141: 110771.
[3] ATHANASAKI G, JAYAKUMAR A, KANNAN A M.Gas diffusion layers for PEM fuel cells: Materials, properties and manufacturing-A review[J]. International journal of hydrogen energy, 2023, 48(6): 2294-2313.
[4] TOGHYANI S, MORADI NAFCHI F, AFSHARI E, et al.Thermal and electrochemical performance analysis of a proton exchange membrane fuel cell under assembly pressure on gas diffusion layer[J]. International journal of hydrogen energy, 2018, 43(9): 4534-4545.
[5] 张拴羊, 杨其国, 徐洪涛, 等. 不同流场结构对PEMFC性能影响的模拟研究[J]. 太阳能学报, 2023, 44(08):62-67.
ZHANG S Y, YANG Q G, XU H T, et al.Numerical simulation on effect of different flow fields on performance of PEMFC[J]. Acta energiae solaris sinica, 2023, 44(8): 62-67.
[6] YANG G G, WANG H, SU F M, et al.Effect of porosity gradient in cathode gas diffusion layer on electrochemical performance of proton exchange membrane fuel cells[J]. Korean journal of chemical engineering, 2023, 40(7): 1598-1605.
[7] ZHOU Y B, JIAO K, DU Q, et al.Gas diffusion layer deformation and its effect on the transport characteristics and performance of proton exchange membrane fuel cell[J]. International journal of hydrogen energy, 2013, 38(29): 12891-12903.
[8] 韩雪梅, 谈金祝, 刘永昌, 等. PEM燃料电池接触压力和电化学性能的研究[J]. 太阳能学报, 2016, 37(11): 2978-2982.
HAN X M, TAN J Z, LIU Y C, et al.Study on contact pressure and electrochemical performance of pem fuel cell[J]. Acta energiae solaris sinica, 2016, 37(11): 2978-2982.
[9] OUAIDAT G, CHEROUAT A, KOUTA R, et al.Numerical modeling of the mechanical behavior of proton exchange membrane fuel cell performance: Design of experiment study and optimization[J]. International journal of hydrogen energy, 2020, 45(46): 25210-25226.
[10] LIU L F, LIU B, WU C W.Reliability prediction of large fuel cell stack based on structure stress analysis[J]. Journal of power sources, 2017, 363: 95-102.
[11] QIU D K, YI P Y, PENG L F, et al.Assembly design of proton exchange membrane fuel cell stack with stamped metallic bipolar plates[J]. International journal of hydrogen energy, 2015, 40(35): 11559-11568.
[12] 张恒, 詹志刚, 陈奔, 等. 基于XCT的气体扩散层传输特性孔尺度模拟[J]. 太阳能学报, 2023, 44(6): 99-105.
ZHANG H, ZHAN Z G, CHEN B, et al.Pore-scale simulation of gas diffusion layer transport characterics based on XCT[J]. Acta energiae solaris sinica, 2023, 44(6): 99-105.
[13] LIU Y, ZHENG J, ZHANG T, et al. Influence of contact compression on gas diffusion layer structure and fuel cell performance: an experimental and modeling study[J]. International Journal of hydrogen energy, 2022, 47(10): 5745-5758.
[14] KUSOGLU A, SANTARE M H, KARLSSON A M, et al.Numerical investigation of mechanical durability in polymer electrolyte membrane fuel cells[J]. Journal of the Electrochemical Society, 2010, 157(5): B705.
[15] ZHOU P, WU C W, MA G J.Contact resistance prediction and structure optimization of bipolar plates[J]. Journal of power sources, 2006, 159(2): 1115-1122.
[16] MISHRA V, YANG F, PITCHUMANI R.Measurement and prediction of electrical contact resistance between gas diffusion layers and bipolar plate for applications to PEM fuel cells[J]. Journal of fuel cell science and technology, 2004, 1(1): 2-9.
[17] MATERA S, SCHNEIDER W F, HEYDEN A, et al.Progress in accurate chemical kinetic modeling, simulations, and parameter estimation for heterogeneous catalysis[J]. ACS catalysis, 2019, 9(8): 6624-6647
[18] 曾维. 基于响应面法接触网参数相互关系研究[D]. 成都: 西南交通大学, 2017.
ZENG W.Study on the relationship between catenary parameters based on response surface method[D]. Chengdu: Southwest Jiaotong University, 2017.
[19] 王君. 不确定激励下动态测试模态参数的识别方法及不确定度评定研究[D]. 合肥: 合肥工业大学, 2016.
WANG J.Research on identification method and uncertainty evaluation of dynamic test modal parameters under uncertain excitation[D]. Hefei: Hefei University of Technology, 2016.
[20] 叶东浩. 膜电极压缩引起的燃料电池内部应力、内阻及水传输行为研究[D]. 武汉: 武汉理工大学, 2014.
YE D H.Effects of MEA compression on fuel cell stress, resistances and water transmission[D]. Wuhan: Wuhan University of Technology, 2014.
[21] 张倩. 水化学环境变化对多孔介质强度和渗透性的影响[D]. 青岛: 中国海洋大学, 2010.
ZHANG Q.Effects of different electrical solutions on strength and permeability of saturated porous[D]. Qingdao: Ocean University of China, 2010.
[22] 赵峰, 王莹, 刘士清, 等. 连体超高层建筑风压偏度与峰度分布特征分析[J]. 湖南科技大学学报(自然科学版), 2019, 34(2): 35-41.
ZHAO F, WANG Y, LIU S Q, et al.Distribution characteristic analysis of wind pressure’s skewness and kurtosis for conjoined super-tall building[J]. Journal of Hunan University of Science & Technology (natural science edition), 2019, 34(2): 35-41.
[23] GUPTA A, RAO S, KUMAR P, et al. Multi?scale modeling of GDL deformation and its impact on PEMFC performance[J]. Journal of power sources, 2021, 489: 229510.
[24] 李维. 基于不确定性分析与模型验证的计算模型可信性研究[D]. 西安: 西北工业大学, 2015.
LI W.Credibility of computational models built on uncertainty analyses and model validation[D]. Xi’an: Northwestern Polytechnical University, 2015.
[25] PEARSDN K. Contributions to the athematica Ⅰ theory of evolution-Ⅱ. skew variation in homogeneous material[J]. Transations of the Royal Society of London(A), 1895, 186: 343-414.
PDF(2294 KB)

Accesses

Citation

Detail

Sections
Recommended

/