RESEARCH PROGRESS OF ANTI-REFLECTION AND SELF-CLEANING THIN FILMS FOR PHOTOVOLTAIC MODULES

Chen Gao, Zheng Damin, Tong Zhuo, Zhu Aolin, Wang Jun, Tong Haixia

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (11) : 339-349.

PDF(5154 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(5154 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (11) : 339-349. DOI: 10.19912/j.0254-0096.tynxb.2024-1257

RESEARCH PROGRESS OF ANTI-REFLECTION AND SELF-CLEANING THIN FILMS FOR PHOTOVOLTAIC MODULES

  • Chen Gao1, Zheng Damin2, Tong Zhuo1, Zhu Aolin1, Wang Jun1, Tong Haixia1
Author information +
History +

Abstract

This paper introduces the principle and application of anti-reflection and self-cleaning thin films. By adjusting the refractive index, thickness and number of layers the thin films, the light reflection loss can be effectively reduced, and the transmittance can be enhanced, so as to improve the power conversion efficiency. The advantages and disadvantages of single-layer, double-layer and multilayer anti-reflection thin films are also discussed. By adding the function of self-cleaning on the basis of anti-reaction coatings, as well as surface modification and decorating photocatalytic materials, the hydrophilic or hydrophobic functionalization can be achieved. Finally, the future development prospect of anti-reflective self-cleaning thin films is discussed.

Key words

photovoltaic modules / thin films / antireflection coatings / self-cleaning / transmittance / hydrophobicity

Cite this article

Download Citations
Chen Gao, Zheng Damin, Tong Zhuo, Zhu Aolin, Wang Jun, Tong Haixia. RESEARCH PROGRESS OF ANTI-REFLECTION AND SELF-CLEANING THIN FILMS FOR PHOTOVOLTAIC MODULES[J]. Acta Energiae Solaris Sinica. 2025, 46(11): 339-349 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1257

References

[1] DONG Z, CHANG L, KAI Y, et al.Droplet cleaning method and water consumption analysis for superhydrophobic solar photovoltaic glass[J]. Solar energy, 2022, 235: 94-104.
[2] TENG X, ZHUANG W, LIU FP, et al.China’s path of carbon neutralization to develop green energy and improve energy efficiency[J]. Renewable energy, 2023, 206: 397-408.
[3] MAZZIO K A, LUSCOMBE C K.The future of organic photovoltaics[J]. Chem Soc Rev, 2015, 44(1): 78-90.
[4] INGANAS O.Organic photovoltaics over three decades[J]. Advanced materials, 2018, 30(35): e1800388.
[5] KANT K, SHUKLA A, SHARMA A, et al.Thermal response of poly-crystalline silicon photovoltaic panels: numerical simulation and experimental study[J]. Solar energy, 2016, 134: 147-155.
[6] ANDENÆS E, JELLE B P, RAMLO K, et al. The influence of snow and ice coverage on the energy generation from photovoltaic solar cells[J]. Solar energy, 2018, 159: 318-328.
[7] MUSA S D, ZHONGHUA T, IBRAHIM A O, et al.China’s energy status: a critical look at fossils and renewable options[J]. Renewable and sustainable energy reviews, 2018, 81: 2281-2290.
[8] 张云龙, 陈新亮, 周忠信, 等. 晶体硅太阳电池研究进展[J]. 太阳能学报, 2021, 42(10): 49-60.
ZHANG Y L, CHEN X L, ZHOU Z X,et al.Research progress of crystalline silicon solar cells[J]. Acta energiae solaris sinica, 2021, 42(10): 49-60.
[9] GREEN M A.Third generation photovoltaics: ultra-high conversion efficiency at low cost[J]. Progress in photovoltaics: research and applications, 2001, 9(2): 123-135.
[10] WALI Q, IFTIKHAR F J.Effect of crystallization on the photovoltaic parameters and stability of perovskite solar cells[J]. Polyhedron, 2021, 199.
[11] HAN Z, JIAO Z, NIU S, et al.Ascendant bioinspired antireflective materials: opportunities and challenges coexist[J]. Progress in materials science, 2019, 103: 1-68.
[12] ZENG Y, SONG N, LIM S, et al.Comparative durability study of commercial inner-pore antireflection coatings and alternative dense coatings[J]. Solar energy materials and solar cells, 2023, 251.
[13] RAGESH P, ANAND GANESH V, NAIR S V, et al.A review on ‘self-cleaning and multifunctional materials’[J]. Journal of materials chemistry A, 2014, 2(36): 14773-14797.
[14] SUTHA S, SURESH S, RAJ B, et al.Transparent alumina based superhydrophobic self-cleaning coatings for solar cell cover glass applications[J]. Solar energy materials and solar cells, 2017, 165: 128-137.
[15] WANG P, ZENG J Y, YAN X L, et al.A three-layer superhydrophobic coatings inspired by human scalp structure with excellent anti-reflection and durable effects for photovoltaic applications[J]. Journal of cleaner production, 2023, 414.
[16] GHOLAMI A, KHAZAEE I, ESLAMI S, et al.Experimental investigation of dust deposition effects on photo-voltaic output performance[J]. Solar energy, 2018, 159: 346-352.
[17] 廖智兴, 刘全兵, 黄斯珉, 等. 基于表面改性的光伏组件冷凝除尘特性研究[J]. 太阳能学报, 2022, 43(11): 33-40.
LIAO Z X, LIU Q B, HUANG S M, et al.Investigation of condensation-induced dust removal on modified surface for PV module[J]. Acta energiae solaris sinica, 2022, 43(11): 33-40.
[18] 解迎千, 胡华友, 吴云来, 等. 纳米涂层光伏组件的清洗效果及清洗周期研究[J]. 太阳能, 2024, (9): 97-104.
XIE Y Q, HU H Y, WU Y L, et al.Study on cleaning effect and cleaning cycle of nano coated PV modules[J]. Solar energy, 2024, (9): 97-104.
[19] SYAFIQ A, PANDEY A K, ADZMAN N N, et al.Advances in approaches and methods for self-cleaning of solar photovoltaic panels[J]. Solar energy, 2018, 162: 597-619.
[20] FIGGIS B, BERMUDEZ V.PV coating abrasion by cleaning machines in desert environments-measurement techniques and test conditions[J]. Solar energy, 2021, 225: 252-258.
[21] WANG P, WANG H Y, LI J, et al.A superhydrophobic film of photovoltaic modules and self-cleaning performance[J]. Solar energy, 2021, 226: 92-99.
[22] 陈纳新, 刘震, 陈一锋, 等. 光伏组件表面清洁技术的研究及应用进展[J]. 太阳能, 2023, (8): 72-78.
CHEN N X, LIIU Z, CHEN Y F, et al.Progress in the research and application of PV modules surface cleaning technology[J]. Solar energy, 2023, (8): 72-78.
[23] JILAVI M H, MOUSAVI S H, MÜLLER T S, et al. Dual functional porous anti-reflective coatings with a photocatalytic effect based on a single layer system[J]. Applied surface science, 2018, 439: 323-328.
[24] SHARIFI RAD A, AFSHAR A, AZADEH M.Antireflection and photocatalytic single layer and double layer ZnO and ZnO-TiO2 thin films[J]. Optical materials, 2023, 136.
[25] HUANG J Y, WANG Y, TAO FEI G, et al.TiO2/ZnO double-layer broadband antireflective and down-shifting coatings for solar applications[J]. Ceramics international, 2023, 49(7): 11091-11100.
[26] WANG J D, GE J J, HOU H G, et al.Design and sol-gel preparation of SiO2/TiO2 and SiO2/SnO2/SiO2-SnO2 multilayer antireflective coatings[J]. Applied surface science, 2017, 422: 970-974.
[27] 朱晓岗, 黄艳萍, 黄文浩, 等. 光伏镀膜玻璃研究进展及发展趋势[J]. 硅酸盐通报, 2024, 43(4): 1211-1218.
ZHU X G, HUANG Y P, HUANG W H, et al.Research progress and development trend of photovoltaic coated glass[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(04): 1211-1218.
[28] 井希明, 盛永刚. 溶胶-凝胶法制备SiO2减反膜研究[J]. 日用化学工业(中英文), 2023, 53(2): 210-219.
JING X M, SHENG Y G.Preparation of SiO2 antireflective coatings by sol-gel method[J]. China surfactant detergent & cosmetics, 2023, 53(2): 210-219.
[29] OTA Y, AHMAD N, NISHIOKA K.A 3.2% output increase in an existing photovoltaic system using an anti-reflection and anti-soiling silica-based coat[J]. Solar energy, 2016, 136: 547-552.
[30] 上官炫烁, 唐梓彭, 魏超, 等. 光伏组件减反射薄膜在山地光伏电站中的应用研究[J]. 太阳能, 2023, (10): 62-68.
SHANGGUAN X H, TANG Z P, EI C, et al.Research on application of PV module anti-reflective coating in mountain PV power stations[J]. Solar energy, 2023, (10): 62-68.
[31] CHUNDI N, DAS B, KOLLI C S R, et al. Single layer hollow MgF2 nanoparticles as high-performance omnidirectional broadband antireflective coating for solar application[J]. Solar energy materials and solar cells, 2020, 215.
[32] LIU X N, LU X R, WEN P, et al.Synthesis of ultrasmall silica nanoparticles for application as deep-ultraviolet antireflection coatings[J]. Applied surface science, 2017, 420: 180-185.
[33] CHEN CN, WU MJ, HSU CF, et al.Antireflection coating of SiO2 thin film in dye-sensitized solar cell prepared by liquid phase deposition[J]. Surface and coatings technology, 2017, 320: 28-33.
[34] CHEN P D, WANG H N, CHEN R Y.Calcination-free synthesis of high strength self-cleaning anti-reflective MgF2-TiO2 coating[J]. Materials letters, 2019, 240: 17-20.
[35] JI Z H, BAO L, WANG H N, et al.Preparation of super-hydrophobic antireflective films by rod-like MgF2 and SiO2 mixed sol[J]. Materials letters, 2017, 207: 21-24.
[36] YE L Q, ZHANG S M, WANG Q, et al.Mechanically stable single-layer mesoporous silica antireflective coating on solar glass[J]. RSC advances, 2014, 4(67): 35818-35822.
[37] CHI FT, ZENG YY, LIU C, et al.Aggregation of silica nanoparticles in sol-gel processes to create optical coatings with controllable ultralow refractive indices[J]. ACS applied materials & interfaces, 2020, 12(14): 16887-16895.
[38] DONG BP, LI ZA, LIU JC, et al.Preparation of SiO2 antireflection film with high hardness and adhesion by mPEG[J]. Reactive and functional polymers, 2022, 171: 105176.
[39] CHEN L, LI ZY, ZHANG PH, et al.Effect of PAA on the structure and transmittance of hollow spherical SiO2 film prepared by sol-gel method[J]. Ceramics International, 2023, 49(4): 6805-6810.
[40] YE LQ, LI LL, WANG X, et al.Template-free synthesis of uniform hollow silica nanoparticles for controllable antireflection coatings[J]. Ceramics International, 2020, 46(6): 7453-7458.
[41] WEI Y S, XU S H, YUAN L G, et al.Double-layer anti-reflection coating of SiO2-TiO2/SiO2-TiO2-PEG300 with high transmittance and super-hydrophilicity[J]. Materials research Express, 2020, 7(9): 096402.
[42] LI Y Y, LYU H B, YE L Q, et al.Preparation of porous silica films in a binary template system for double-layer broadband antireflective coatings[J]. RSC advances, 2015, 5(26): 20365-20370.
[43] 吴唯正, 黄粤夷, 陈爱英. TiO2/SiO2/GQDs双层增透膜的制备及其在太阳能板中的应用[J]. 有色金属材料与工程, 2021, 42(5): 1-7.
WU W Z, HUANG Y Y, CHEN A Y.Preparation of TiO2/SiO2/GQDs double-layer anti-reflection film and its application in solar panels[J]. Nonferrous metal materials and engineering, 2021, 42(5): 1-7.
[44] LIU H X, WANG P M, FAN Q Y, et al.λ/4-λ/4 double-layer broadband antireflective coatings with constant high transmittance[J]. Coatings, 2022, 12(4): 435.
[45] LI Y Y, JIANG B.λ/4-λ/2 double-layer broadband antireflective coatings with superhydrophilicity and photocatalysis[J]. Journal of inorganic materials, 2019, 34(2): 159-163.
[46] QU J X, JIA H B, WANG W W, et al.Design and Implementation of three-layer mesoporous silica coating for tri-wavelength broadband antireflection by block copolymer assisted sol-gel method[J]. Silicon, 2023, 15(11): 4959-4966.
[47] XU S Y, JIA H B, WANG C Y, et al.Low-temperature preparation of SiO2/Nb2O5/TiO2-SiO2 broadband antireflective coating for the visible via acid-catalyzed sol-gel method[J]. Coatings, 2020, 10(8): 737.
[48] SUN X Y, TU J L, LI L, et al.Preparation of wide-angle and abrasion-resistant multi-layer antireflective coatings by MgF2 and SiO2 mixed sol[J]. Colloids and surfaces a: physicochemical and engineering aspects, 2020, 602: 125106.
[49] YU C M, SASIC S, LIU K, et al.Nature-Inspired self-cleaning surfaces: mechanisms, modelling, and manufacturing[J]. Chemical engineering research and design, 2020, 155: 48-65.
[50] 吴延鹏, 雷晓宇, 陆禹名, 等.太阳能利用透光表面超疏水增透膜研究进展[J]. 化工学报, 2021, 72(S1): 21-29.
WU Y P, LEI X Y, LU Y M, et al.Research progress of superhydrophobic anti-reflection films applied on transparent surfaces of solar devices[J]. CIESC journal, 2021, 72(S1): 21-29.
[51] JOSHI D N, ATCHUTA S R, LOKESWARA REDDY Y, et al.Super-hydrophilic broadband anti-reflective coating with high weather stability for solar and optical applications[J]. Solar energy materials and solar cells, 2019, 200, 110023.
[52] LI Z K, HE H Y, WANG X, et al.Robust SiO2@TiO2 nanocoatings with antireflection and photocatalytic self-cleaning properties by introducing commercial P25 TiO2[J]. Colloids and surfaces A: physicochemical and engineering aspects, 2023, 664, 131176.
[53] GARLISI C, TREPCI E, LI X, et al.Multilayer thin film structures for multifunctional glass: Self-cleaning, antireflective and energy-saving properties[J]. Applied energy, 2020, 264, 114697.
[54] WU J, WANG H N, BAO L, et al.Novel raspberry-like hollow SiO2@TiO2 nanocomposites with improved photocatalytic self-cleaning properties: towards antireflective coatings[J]. Thin solid films, 2018, 651: 48-55.
[55] WU J H, TU J, HU K, et al.Sol-gel-derived bayberry-like SiO2@TiO2 multifunctional antireflective coatings for enhancing photovoltaic power generation[J]. Colloids and surfaces A:physicochemical and engineering aspects, 2022, 654, 130173.
[56] ADAK D, GHOSH S, CHAKRABARTY P, et al.Self-cleaning V-TiO2:SiO2 thin-film coatings with enhanced transmission for solar glass cover and related applications[J]. Solar energy, 2017, 155: 410-418.
[57] MA M L, HILL R M.Superhydrophobic surfaces[J]. Current opinion in colloid & interface science, 2006, 11(4): 193-202.
[58] 谭皓文, 米菁, 于庆河, 等. 溶胶凝胶法制备疏水增透膜结构与性能研究[J]. 太阳能学报, 2021, 42(4): 307-311.
TAN H W,MI J, YU Q H, et al.Research on structure and properties of hydrophobic antireflection coatings by sol-gel method[J]. Acta Energiae Solaris Sinica, 2021, 42(4): 307-311.
[59] XU M, FENG Y, LI Z L, et al.A novel, efficient and cost-effective synthesis technique for the development of superhydrophobic glass surface[J]. Journal of alloys and compounds, 2019, 781: 1175-1181.
[60] WANG Z, LI B, FENG X M, et al.Rapid fabrication of bio-inspired antireflection film replicating from cicada wings[J]. Journal of bionic engineering, 2020, 17(1): 34-44.
[61] 雷然, 王嘉柔, 赵颂, 等. 超疏水、自清洁氟化石墨改性不锈钢网的油水分离研究[J]. 化工学报, 2021, 72(2): 1191-1201.
LEI R, WANG J R, ZHAO S, et al.Study on oil-water separation of superhydrophobic and self-cleaning fluorinated graphite modified stainless steel mesh[J]. CIESC journal, 2021, 72(2): 1191-1201.
[62] DOU W W, WANG P, ZHANG D, et al.An efficient way to prepare hydrophobic antireflective SiO2 film by sol-gel method[J]. Materials letters, 2016, 167: 69-72.
[63] TAO C Y, YAN H W, YUAN X D, et al.Sol-gel based antireflective coatings with superhydrophobicity and exceptionally low refractive indices built from trimethylsilanized hollow silica nanoparticles[J]. Colloids and surfaces A: physicochemical and engineering aspects, 2016, 509: 307-313.
[64] WANG Y, LIU J C, NIE L F.Preparation of fluorine‐free and superhydrophobic SiO2 film with high transmittance[J]. Chemistry select, 2020, 5(33): 10220-10227.
[65] ZHANG S M, XIAO P W, WANG P M, et al.Spherical-chain silica with super-hydrophobic surface and ultra-low refractive index for multi-functional broadband antireflective coatings[J]. Solar energy, 2020, 207: 1222-1230.
PDF(5154 KB)

Accesses

Citation

Detail

Sections
Recommended

/