INVESTIGATION ON INFLUENCE OF WIND FIELD CHARACTERISTICS OF DOWNBURST FLOW AND WIND TURBINE BLADE DEFORMATION UNDER DIFFERENT JET INCLINATION ANGLES

Wang Yan, An Long, Li Haolin, Wang Bo, Li Ye

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (11) : 692-703.

PDF(5415 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(5415 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (11) : 692-703. DOI: 10.19912/j.0254-0096.tynxb.2024-1275

INVESTIGATION ON INFLUENCE OF WIND FIELD CHARACTERISTICS OF DOWNBURST FLOW AND WIND TURBINE BLADE DEFORMATION UNDER DIFFERENT JET INCLINATION ANGLES

  • Wang Yan1,2, An Long1,2, Li Haolin3, Wang Bo1, Li Ye1
Author information +
History +

Abstract

In order to reveal the wind field characteristics of downburst flow at different jet inclination angles and their effects on wind turbine blade deformation, this study simulated the wind field characteristics of atmospheric boundary layer at five jet inclination angles of 0°, 5°, 10°, 15° and 20° based on computational fluid dynamics method, analyzed the horizontal and vertical wind velocity profiles of downburst flow at different jet inclination angles. Meanwhile, the influence of wind field with different jet inclination angles on blade surface pressure distribution and structural deformation is explored. The results show that with the increase of jet inclination, the maximum horizontal wind speed on the side where the downburst occurs increases, and the rate of vertical velocity decreasing slows down. The change of inclination angle has anegligible effect on the pressure in the area where the downburst occurs. For the influence of turbulence intensity distribution, the turbulence intensity at the back of the jet region increases with the increase of jet inclination, while the turbulence intensity at the front side decreases. When the wind turbine is located in the downburst flow field with different jet inclination angles, the distribution of blade surface pressure is inhomogeneous, and the blade tip bears more wind pressure than other positions. With the increase of jet inclination angle, the blade surface pressure increases, the pressure of the near-ground two blades increases substantially, reaching the maximum value of about 50 Pa when the inclination is 20°. The pressure of the father-from-ground blade surface increases slowly. The structural deformation at blade tip and the equivalent stress in the middle of blade increase with the increase of the inclination angle. This study provides some theoretical support for the safe operation of wind turbines in extreme weather, also offers assistance for wind turbine anti-wind design.

Key words

jet tilt / downburst / wind turbines / wind turbine blades / wind field characteristics / structural deformation

Cite this article

Download Citations
Wang Yan, An Long, Li Haolin, Wang Bo, Li Ye. INVESTIGATION ON INFLUENCE OF WIND FIELD CHARACTERISTICS OF DOWNBURST FLOW AND WIND TURBINE BLADE DEFORMATION UNDER DIFFERENT JET INCLINATION ANGLES[J]. Acta Energiae Solaris Sinica. 2025, 46(11): 692-703 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1275

References

[1] 张旭耀, 李对, 寇海霞, 等. 下击暴流不同高度水平最大风速对风力机气动载荷的影响[J]. 太阳能学报, 2023, 44(10): 370-375.
ZHANG X Y, LI D, KOU H X, et al.Influence of horizontal maximum wind speed at different height of downburst on aerodynamic load of wind turbine[J]. Acta energiae solaris sinica, 2023, 44(10): 370-375.
[2] 韩然, 王珑, 王同光, 等. 台风不同区域中的风力机动力响应特性研究[J]. 太阳能学报, 2020, 41(10): 251-258.
HAN R, WANG L, WANG T G, et al.Danamic response characteristics of wind turbine in different regions of typhoon[J]. Acta energiae solaris sinica, 2020, 41(10): 251-258.
[3] HAWBECKER P, BASU S, MANUEL L.Realistic simulations of the July 1, 2011 severe wind event over the Buffalo Ridge Wind Farm[J]. Wind energy, 2017, 20(11): 1803-1822.
[4] 刘春城, 侯萌. 下击暴流作用下输电线路导线风偏响应特性研究[J]. 振动与冲击, 2022, 41(22): 60-69.
LIU C C, HOU M.Wind deflection response characteristics of transmission lines under downburst[J]. Journal of vibration and shock, 2022, 41(22): 60-69.
[5] PROCTOR F H.Numerical simulations of an isolated microburst. part I: dynamics and structure[J]. Journal of the atmospheric sciences, 1988, 45(21): 3137-3160.
[6] 李佳骏. 三维下击暴流流场特征的数值仿真研究[D]. 兰州: 兰州大学, 2019.
LI J J.Numerical simulation study on the characteristics of 3D downburst flow field[D]. Lanzhou: Lanzhou University, 2019.
[7] 李波, 李若琦, 田玉基, 等. 基于物理模拟的不同射流倾角下击暴流风场特征[J]. 振动与冲击, 2023, 42(11): 215-222.
LI B, LI R Q, TIAN Y J, et al.Downburst outflow under different angles of jet tilt based on physical simulation[J]. Journal of vibration and shock, 2023, 42(11): 215-222.
[8] 吉柏锋, 邱鹏辉, 柳广义, 等. 下击暴流作用下低矮双坡建筑表面风压特性研究[J]. 应用基础与工程科学学报, 2023, 31(4): 865-875.
JI B F, QIU P H, LIU G Y, et al.Study on wind pressure characteristics of low-rise gable-roof buildings under downburst[J]. Journal of basic science and engineering, 2023, 31(4): 865-875.
[9] 褚云朋, 孙鑫晖, 李明, 等. 下击暴流作用下菱形马鞍面屋盖风压特性[J]. 工程力学, 2022, 39(3): 182-192.
CHU Y P, SUN X H, LI M, et al.Wind pressures on a large-span hyperbolic-paraboloid roof subjected to a simulated downburst[J]. Engineering mechanics, 2022, 39(3): 182-192.
[10] XU F, JI B F, XIONG Q, et al.Numerical study on wind pressure characteristics of Chinese yurt building under downburst wind[J]. The structural design of tall and special buildings, 2023, 32(16): e2046.
[11] 汪之松, 刘鸿, 刘亚南, 等. 坡地高层建筑非稳态雷暴冲击风荷载特性研究[J]. 湖南大学学报(自然科学版), 2017, 44(11): 88-98.
WANG Z S, LIU H, LIU Y N, et al.Analysis on wind load characteristics of high-rise buildings under unsteady-state downburst over slope topography[J]. Journal of Hunan University (natural sciences), 2017, 44(11): 88-98.
[12] 李宏海, 欧进萍. 下击暴流作用下建筑物表面风压分布模拟[J]. 工程力学, 2011, 28(增刊2): 147-151.
LI H H, OU J P.Numerical simulation of the wind-induced pressure distribution on building surface in downburst[J]. Engineering mechanics, 2011, 28(S2): 147-151.
[13] PRATAPA P P, NGUYEN H H, MANUEL L.A computational model to simulate thunderstorm downbursts for wind turbine loads analysis[J]. Journal of solar energy engineering, 2023, 145(2): 021002.
[14] 刘春城, 查传磊, 孙红运, 等. 下击暴流作用下风力发电机表面风压特性[J]. 中国电机工程学报, 2021, 41(17): 5991-6003.
LIU C C, ZHA C L, SUN H Y, et al.Wind pressure characteristics of wind turbine surface under thunderstorm downburst[J]. Proceedings of the CSEE, 2021, 41(17): 5991-6003.
[15] AHMED M R, EL DAMATTY A A, DAI K S, et al. Parametric study of the quasi-static response of wind turbines in downburst conditions using a numerical model[J]. Engineering structures, 2022, 250: 113440.
[16] HUY NGUYEN H, MANUEL L.Thunderstorm downburst risks to wind farms[J]. Journal of renewable and sustainable energy, 2013, 5(1): 013120.
[17] LIU C C, MA S Y, YAN Z, et al.Wind field and pressure characteristics on wind turbine surface under moving thunderstorms[J]. Energy reports, 2023, 9: 1917-1927.
[18] WAN T.Microburst simulation via vortex-ring and turbulent jet models[D]. Arlington: The University of Texas at Arlington, 1988.
[19] DANG H X, XING G H, WANG H L, et al.A novel empirical model for vertical profiles of downburst horizontal wind speed[J]. Wind energy, 2024, 27(4): 403-424.
[20] ZHANG Z H, KUANG L M, HAN Z L, et al.Comparative analysis of bent and basic winglets on performance improvement of horizontal axis wind turbines[J]. Energy, 2023, 281: 128252.
[21] 周嘉程. 下击暴流作用下输电塔响应数值模拟与易损性分析[D]. 哈尔滨: 哈尔滨工业大学, 2020.
ZHOU J C.Numerical simulation and vulnerability analysis of transmission tower under downburst[D]. Harbin: Harbin Institute of Technology, 2020.
[22] MASON M.Physical simulation of thunderstorm downbursts [D]. Lubbock (TX, USA): Texas Tech University, 2003.
[23] 徐挺. 雷暴冲击风流场试验模拟[D]. 杭州: 浙江大学, 2010.
XU T.The experimental simulation of thunderstrom downburst[D]. Hangzhou: Zhejiang University, 2010.
[24] WOOD G S, KWOK K C S, MOTTERAM N A, et al. Physical and numerical modelling of thunderstorm downbursts[J]. Journal of wind engineering and industrial aerodynamics, 2001, 89(6): 535-552.
[25] ERIKSSON J G, KARLSSON R I, PERSSON J.An experimental study of a two-dimensional plane turbulent wall jet[J]. Experiments in fluids, 1998, 25(1): 50-60.
[26] 钟永力, 晏致涛, 王灵芝, 等. 基于壁面射流的下击暴流非稳态风场大涡模拟[J]. 西南交通大学学报, 2018, 53(6): 1179-1186.
ZHONG Y L, YAN Z T, WANG L Z, et al.Large eddy simulation of unsteady downburst outflow based on wall jet model[J]. Journal of southwest Jiaotong University, 2018, 53(6): 1179-1186.
[27] AGEZE M B, HU Y F, WU H C.Comparative study on uni- and bi-directional fluid structure coupling of wind turbine blades[J]. Energies, 2017, 10(10): 1499.
[28] ZHAO M, YU W L, WANG P G, et al.Numerical study on the aerodynamic and fluid-structure interaction of an NREL-5MW wind turbine[J]. China ocean engineering, 2024, 38(3): 363-378.
[29] SHAKYA P, THOMAS M, SEIBI A C, et al.Fluid-structure interaction and life prediction of small-scale damaged horizontal axis wind turbine blades[J]. Results in engineering, 2024, 23: 102388.
PDF(5415 KB)

Accesses

Citation

Detail

Sections
Recommended

/