During the process of groundwater source heat pump recharge, microbial blockage represented by Escherichia coli is one of the important causes of ground subsidence, and studying its blockage characteristics is of great practical significance. We studied the “sedimentation detachment” characteristics of Escherichia coli when the direction of seepage and fluid velocity changed using a self-developed sand layer clogging device. The experimental results showed that: 1) Escherichia coli blockage exhibited a saddle shape under three different flow rates, with concentration changes increasing first and then decreasing, and then decreasing again after a correction. Among them, the blockage of Escherichia coli at the throat has a certain degree of dependence, which affects the efficiency of reinjection; 2) After changing the direction of seepage and increasing the flow rate, the dynamic balance of “sedimentation detachment” of Escherichia coli is disrupted, and the concentration of Escherichia coli decreases. The Escherichia coli that originally deposited in the pores are driven to migrate by external forces. By monitoring the liquid sample at the outlet, it was found that there was a significant increase in concentration values. Based on engineering practice, if the method of backflushing is used to treat the wellbore blocked by Escherichia coli, excessive cleaning time may cause new blockages, which may not meet the requirements of thorough cleaning of the wellbore. Therefore, it is necessary to control the reasonable time of backflushing.
Key words
Escherichia coli /
water source heat pump /
sedimentation detachment /
sand and gravel /
clogging /
microorganism
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] 国务院. 国务院关于印发2030年前碳达峰行动方案的通知[EB/OL]. https://www.gov.cn/zhengce/zhengceku/2021-10/26/content_5644984.htm.
The State Council. Notice of the state council on issu-ing the action plan for peaking carbon emissions before2030[EB/OL]. https://www.gov.cn/zhengce/zhengceku/2021-10/26/content_5644984.htm.
[2] 刘晓慧. 高质量开发利用地热能助力美丽中国建设[N]. 中国矿业报, 2024-01-18(1).
LIU X H. High-quality development and utilization of geothermal energy to contribute to the construction of a beautiful China[N]. China mining news, 2024-01-18(1).
[3] 李安桂, 史丙金, 张婉卿, 等. 基于太阳能利用的相变蓄热水箱结构优化[J]. 太阳能学报, 2020, 41(2): 217-224.
LI A G, SHI B J, ZHANG W Q, et al.Structure optimization of phase change thermal storage water tank based on solar energy utilization[J]. Acta energiae solaris sinica, 2020, 41(2): 217-224.
[4] 邬小波. 地下含水层储能和地下水源热泵系统中地下水回路与回灌技术现状[J]. 暖通空调, 2004, 34(1): 19-22.
WU X B.Development of ground water loop for ATES and ground water source heat pump systems[J]. Heating ven tilating & air conditioning, 2004, 34(1): 19-22.
[5] 赵忠仁. 回灌井暂时性堵塞物的形成及其排除过程变化机制分析[J]. 水文地质工程地质, 1988, 15(5): 39-42.
ZHAO Z R.Analysis on the formation of temporary blockage in recharge well and its removal process[J]. Hydrogeology and engineering geology, 1988, 15(5): 39-42.
[6] 何满潮, 刘斌, 姚磊华, 等. 地下热水回灌过程中渗透系数研究[J]. 吉林大学学报(地球科学版), 2002, 32(4): 374-377.
HE M C, LIU B, YAO L H, et al.Study on hydraulic conductivity during geothermal reinjection[J]. Journal of Changchun University of Science and Technology, 2002, 32(4): 374-377.
[7] 赵军, 张程远, 刘泉声. 地下水源热泵砂层阻塞试验研究(Ⅱ)[J]. 岩石力学与工程学报, 2013, 32(S2): 3363-3369.
ZHAO J, ZHANG C Y, LIU Q S.Experimental study of particles clogging in sand layer of ground-source heat pump(Ⅱ)[J]. Chinese journal of rock mechanics and engineering, 2013, 32(S2): 3363-3369.
[8] 赵军, 刘泉声, 张程远. 水源热泵井回灌堵塞颗粒迁移模型的建立[J]. 岩土力学, 2013, 34(11): 3249-3253.
ZHAO J, LIU Q S, ZHANG C Y.Establishment of particle transport model in water source heat pump of physical clogging reinjection well[J]. Rock and soil mechanics, 2013, 34(11): 3249-3253.
[9] 赵军, 张程远, 刘泉声. 水源热泵回灌井悬浮颗粒运移和沉积物理特性试验模型研究[J]. 岩石力学与工程学报, 2014, 33(2): 257-263.
ZHAO J, ZHANG C Y, LIU Q S.Test study of physical properties of suspended particles migration and deposition in water source heat pump injection well[J]. Chinese journal of rock mechanics and engineering, 2014, 33(2): 257-263.
[10] 赵军, 吴雨明, 张程远. 地下水源热泵物理阻塞系统介质长度改变时沉积特性参数研究[J]. 太阳能学报, 2019, 40(5): 1193-1197.
ZHAO J, WU Y M, ZHANG C Y.Study on parameters of deposition characteristics of medium length of water source heat pump system[J]. Acta energiae solaris sinica, 2019, 40(5): 1193-1197.
[11] NAGANO K, MOCHIDA T, OCHIFUJI K.Influence of natural convection on forced horizontal flow in saturated porous media for aquifer thermal energy storage[J]. Applied thermal engineering, 2002, 22(12): 1299-1311.
[12] RAFFERTY K D.Water chemistry issues in geothermal heat pump system[J]. ASHRAE transactions, 2004, 110(1): 550-555.
[13] 曾晓佳. 天然滤床淤塞机理及防治研究[D]. 成都: 成都理工大学, 2007.
ZENG X J.A study on silting and prophylactico-therapeutic measures of filtering bed[D]. Chengdu: Chengdu University of Technology, 2007.
[14] BENNETT P, SIEGEL D I.Increased solubility of quartz in water due to complexing by organic compounds[J]. Nature, 1987, 326(6114): 684-686.
[15] THULLNER M, BAVEYE P.Computational pore network modeling of the influence of biofilm permeability on bioclogging in porous media[J]. Biotechnology and bioengineering, 2008, 99(6): 1337-1351.
[16] WEROŃSKI P, WALZ J Y, ELIMELECH M. Effect of depletion interactions on transport of colloidal particles in porous media[J]. Journal of colloid and interface science, 2003, 262(2): 372-383.