GROUND FAULT DIAGNOSIS OF PHOTOVOLTAIC ARRAYS BASED ON IMPROVED CUCKOO SEARCH-SUPPORT VECTOR MACHINES

Zhao Jingying, Li Bicheng, Wu Jingjing, Liu Jianmeng

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (11) : 363-373.

PDF(2451 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2451 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (11) : 363-373. DOI: 10.19912/j.0254-0096.tynxb.2024-1289

GROUND FAULT DIAGNOSIS OF PHOTOVOLTAIC ARRAYS BASED ON IMPROVED CUCKOO SEARCH-SUPPORT VECTOR MACHINES

  • Zhao Jingying1, Li Bicheng1, Wu Jingjing1, Liu Jianmeng2
Author information +
History +

Abstract

The line-ground faults, unipolar grounding and rainy day grounding faults that tend to occur in photovoltaic arrays in complex environments are investigated. In view of the ineffective detection of line-ground faults under low irradiance or high mismatch ratio, the variation patterns of key parameters based on the multi-irradiance modes are proposed, and the rightmost power peak voltage VRPP, the rightmost power peak current IRPP are determined as the feature quantities of line-ground faults. The voltage correlation between faulted and non-faulted poles is analysed by Pearson correlation coefficient to determine the feature quantity of unipolar grounding fault. In view of the mechanism of common mode current generated by rainy day grounding fault, the fault feature quantity is proposed based on wavelet transform and total harmonic distortion rate. Finally, the ground fault diagnosis model of PV array based on improved cuckoo search algorithm optimised support vector machines (ICS-SVM) is constructed, and the validity of the proposed ground fault feature, the diagnostic accuracy and convergence speed of the model are confirmed by simulation and experimental validation under different irradiance levels on sunny and rainy days.

Key words

photovoltaics / grounding / fault diagnosis / support vector machines / feature extraction / mismatch

Cite this article

Download Citations
Zhao Jingying, Li Bicheng, Wu Jingjing, Liu Jianmeng. GROUND FAULT DIAGNOSIS OF PHOTOVOLTAIC ARRAYS BASED ON IMPROVED CUCKOO SEARCH-SUPPORT VECTOR MACHINES[J]. Acta Energiae Solaris Sinica. 2025, 46(11): 363-373 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1289

References

[1] 姚玉璧, 郑绍忠, 杨扬, 等. 中国太阳能资源评估及其利用效率研究进展与展望[J]. 太阳能学报, 2022, 43(10): 524-535.
YAO Y B, ZHENG S Z, YANG Y, et al.Progress and prospects on solar energy resource evaluation and utilization efficiency in China[J]. Acta energiae solaris sinica, 2022, 43(10): 524-535.
[2] 潘华, 梁作放, 肖雨涵, 等. 多场景下区域综合能源系统的优化运行[J]. 太阳能学报, 2021, 42(1): 484-492.
PAN H, LIANG Z F, XIAO Y H, et al.Optimal operation of regional integrated energy system under multiple scenes[J]. Acta energiae solaris sinica, 2021, 42(1): 484-492.
[3] 黄雨薇, 彭道刚, 姚峻, 等. 基于SSA和K均值的TD-BP神经网络超短期光伏功率预测[J]. 太阳能学报, 2021, 42(4): 229-238.
HUANG Y W, PENG D G, YAO J, et al.Ultra-short-term photovoltaic power forecast of TD-BP neural network based on SSA and K-means[J]. Acta energiae solaris sinica, 2021, 42(4): 229-238.
[4] HARIHARAN R, CHAKKARAPANI M, SARAVANA ILANGO G, et al.A method to detect photovoltaic array faults and partial shading in PV systems[J]. IEEE journal of photovoltaics, 2016, 6(5): 1278-1285.
[5] 李俊松, 张英敏, 曾琦, 等. MMC-MTDC系统单极接地故障电流计算方法[J]. 电网技术, 2019, 43(2): 546-555.
LI J S, ZHANG Y M, ZENG Q, et al.Pole-to-ground fault current calculation method for MMC-MTDC systems[J]. Power system technology, 2019, 43(2): 546-555.
[6] YANG R Z, DU B L, DUAN P H, et al.Electromagnetic induction heating and image fusion of silicon photovoltaic cell electrothermography and electroluminescence[J]. IEEE transactions on industrial informatics, 2020, 16(7): 4413-4422.
[7] DOLL B, HEPP J, HOFFMANN M, et al.Photoluminescence for defect detection on full-sized photovoltaic modules[J]. IEEE journal of photovoltaics, 2021, 11(6): 1419-1429.
[8] RAHAMAN S A, URMEE T, PARLEVLIET D A.Investigate the impact of environmental and operating conditions of infrared (IR) imaging on infrared thermography of PV modules to identify defects[J]. Solar energy, 2022, 245: 231-253.
[9] CHEN S Q, YANG G J, GAO W, et al.Photovoltaic fault diagnosis via semisupervised ladder network with string voltage and current measures[J]. IEEE journal of photovoltaics, 2021, 11(1): 219-231.
[10] EDUN A S, KINGSTON S, LAFLAMME C, et al.Detection and localization of disconnections in a large-scale string of photovoltaics using SSTDR[J]. IEEE journal of photovoltaics, 2021, 11(4): 1097-1104.
[11] 吴春华, 曹明杰, 李智华, 等. 光伏系统直流电缆故障检测及其定位研究[J]. 太阳能学报, 2021, 42(5): 267-275.
WU C H, CAO M J, LI Z H, et al.Study on detection and location method of DC cable fault for photovoltaic system[J]. Acta energiae solaris sinica, 2021, 42(5): 267-275.
[12] 王尧, 马桐桐, 赵宇初, 等. 基于电磁辐射时延估计的串联光伏直流电弧故障定位方法[J]. 电工技术学报, 2023, 38(8): 2233-2243.
WANG Y, MA T T, ZHAO Y C, et al.Series DC arc-fault location method based on electromagnetic radiation delay estimation for photovoltaic systems[J]. Transactions of China Electrotechnical Society, 2023, 38(8): 2233-2243.
[13] 吴擎. 基于深度学习的光伏发电系统故障诊断方法研究[D]. 济南: 山东大学, 2019.
WU Q.Researh on fault diagnosis methods of photovoltaic power systems based on deep learning[D]. Ji’nan: Shandong University, 2019.
[14] UL-HAQ A, SINDI H F, GUL S, et al.Modeling and fault categorization in thin-film and crystalline PV arrays through multilayer neural network algorithm[J]. IEEE access, 2020, 8: 102235-102255.
[15] 陈世群, 杨耿杰, 高伟. 一种基于BOA-SAE-EELM的光伏阵列故障诊断方法[J]. 太阳能学报, 2022, 43(4): 154-161.
CHEN S Q, YANG G J, GAO W.A fault diagnosis method for photovoltaic array via BOA-SAE-EELM[J]. Acta energiae solaris sinica, 2022, 43(4): 154-161.
[16] 齐咏生, 单成成, 高胜利, 等. 基于AEWT-KELM的风电机组轴承故障诊断策略[J]. 太阳能学报, 2022, 43(8): 281-291.
QI Y S, SHAN C C, GAO S L, et al.Fault diagnosis strategy of wind turbines bearing based on AEWT-KELM[J]. Acta energiae solaris sinica, 2022, 43(8): 281-291.
PDF(2451 KB)

Accesses

Citation

Detail

Sections
Recommended

/