RESEARCH ON YAW ANGLE OPTIMIZATION ALGORITHM FOR WAKE CONTROL IN WIND FARMS

Cong Longfu, Dai Liping, Chang Ning, Zou Ang, Zhou Yixiao, Wang Zikun

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (11) : 747-753.

PDF(3959 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(3959 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (11) : 747-753. DOI: 10.19912/j.0254-0096.tynxb.2024-1295

RESEARCH ON YAW ANGLE OPTIMIZATION ALGORITHM FOR WAKE CONTROL IN WIND FARMS

  • Cong Longfu, Dai Liping, Chang Ning, Zou Ang, Zhou Yixiao, Wang Zikun
Author information +
History +

Abstract

This paper establishes an accurate process for yaw angle calculation based on the Ishihara Gaussian wake model, the energy-conserving wake superposition model, and several optimization algorithms, including the African Vulture Optimization Algorithm (AVOA). The efficiency of these algorithms is evaluated, and the influence of the turbulence superposition coefficient on the results is analyzed by comparing with LES data from the literature. Furthermore, a rapid yaw angle optimization process is developed using the TSFC optimization algorithm proposed in this study. Both optimization algorithms are applied to yaw angle optimization for turbines in tandem and in optimized layout configurations. The results indicate that a turbulence superposition coefficient of 2.8 leads to more accurate predictions of downstream turbulence intensity. For wind farms with varying layouts, active yaw control can improve power generation by 0.4% to 2.2%. Additionally, the TSFC algorithm significantly outperforms the African Vulture Optimization Algorithm in terms of efficiency, reducing computational time by an order of magnitude.

Key words

wind farm / optimization / wake / yaw control / wind turbines / algorithm

Cite this article

Download Citations
Cong Longfu, Dai Liping, Chang Ning, Zou Ang, Zhou Yixiao, Wang Zikun. RESEARCH ON YAW ANGLE OPTIMIZATION ALGORITHM FOR WAKE CONTROL IN WIND FARMS[J]. Acta Energiae Solaris Sinica. 2025, 46(11): 747-753 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1295

References

[1] 李大伟, 王鹏, 刘建平, 等. 大型风电场尾流效应的耦合求解方法[J]. 太阳能学报, 2023, 44(2): 93-98.
LI D W, WANG P, LIU J P, et al.Coupled method for evaluating wake effect of large wind farms[J]. Acta energiae solaris sinica, 2023, 44(2): 93-98.
[2] STEVENS R J A M, MENEVEAU C. Flow structure and turbulence in wind farms[J]. Annual review of fluid mechanics, 2017, 49: 311-339.
[3] HOWLAND M F, LELE S K, DABIRI J O.Wind farm power optimization through wake steering[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(29): 14495-14500.
[4] BASTANKHAH M, PORTÉ-AGEL F.Wind farm power optimization via yaw angle control: a wind tunnel study[J]. Journal of renewable and sustainable energy, 2019, 11(2): 023301.
[5] BASTANKHAH M, PORTÉ-AGEL F.A new analytical model for wind-turbine wakes[J]. Renewable energy, 2014, 70: 116-123.
[6] 张子良, 郭乃志, 易侃, 等. 基于稳定偏航的风电场协同控制[J]. 太阳能学报, 2024, 45(6): 530-535.
ZHANG Z L, GUO N Z, YI K, et al.Coordinated control of wind farm based on steady yaw[J]. Acta energiae solaris sinica, 2024, 45(6): 530-535.
[7] 宁旭, 曹留帅, 万德成. 基于尾流模型的风场偏航控制优化研究[J]. 海洋工程, 2020, 38(5): 80-90.
NING X, CAO L S, WAN D C.Study of wind farm optimization through yaw control based on analytical wake model[J]. The ocean engineering, 2020, 38(5): 80-90.
[8] NIAYIFAR A, PORTÉ-AGEL F.Analytical modeling of wind farms: a new approach for power prediction[J]. Energies, 2016, 9(9): 741.
[9] 蒋秋俊, 郑海涛, 杨庆山, 等. 基于网格-坐标化遗传算法的风电场布局优化[J]. 太阳能学报, 2022, 43(8): 266-272.
JIANG Q J, ZHENG H T, YANG Q S, et al.Wind farm layout optimization based on grid-coordinate genetic algorithm[J]. Acta energiae solaris sinica, 2022, 43(8): 266-272.
[10] 张子良, 郭乃志, 易侃, 等. 基于主动变桨的风电场协同控制[J]. 太阳能学报, 2024, 45(9): 511-516.
ZHANG Z L, GUO N Z, YI K, et al.Cooperative control of wind farm based on active pitch[J]. Acta energiae solaris sinica, 2024, 45(9): 511-516.
[11] QIAN G W, ISHIHARA T.A new analytical wake model for yawed wind turbines[J]. Energies, 2018, 11(3): 665.
[12] ABDOLLAHZADEH B, GHAREHCHOPOGH F S, MIRJALILI S.African vultures optimization algorithm: a new nature-inspired metaheuristic algorithm for global optimization problems[J]. Computers & industrial engineering, 2021, 158: 107408.
[13] FLEMING P A, STANLEY A P J, BAY C J, et al. Serial-refine method for fast wake-steering yaw optimization[J]. Journal of physics: conference series, 2022, 2265(3): 032109.
[14] WEI D Z, ZHAO W W, WAN D C, et al.A new method for simulating multiple wind turbine wakes under yawed conditions[J]. Ocean engineering, 2021, 239: 109832.
[15] MOSETTI G, POLONI C, DIVIACCO B.Optimization of wind turbine positioning in large windfarms by means of a genetic algorithm[J]. Journal of wind engineering and industrial aerodynamics, 1994, 51(1): 105-116.
[16] WU Y T, PORTÉ-AGEL F.Modeling turbine wakes and power losses within a wind farm using LES: an application to the Horns Rev offshore wind farm[J]. Renewable energy, 2015, 75: 945-955.
PDF(3959 KB)

Accesses

Citation

Detail

Sections
Recommended

/