STUDY ON CATALYTIC METHANATION PERFORMANCE OF CARBON DIOXIDE AND HYDROGEN MIXTURE OF NICKEL-BASED CATALYST SUPPORTED BY ZSM-5

Xing Wanli, Lin Chuang, Cao Jingxuan, Yang Tianhua, Zhang Wanli, Kai Xingping

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (11) : 792-800.

PDF(2412 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2412 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (11) : 792-800. DOI: 10.19912/j.0254-0096.tynxb.2024-1301

STUDY ON CATALYTIC METHANATION PERFORMANCE OF CARBON DIOXIDE AND HYDROGEN MIXTURE OF NICKEL-BASED CATALYST SUPPORTED BY ZSM-5

  • Xing Wanli, Lin Chuang, Cao Jingxuan, Yang Tianhua, Zhang Wanli, Kai Xingping
Author information +
History +

Abstract

In this paper, H2/CO2/N2 was employed as the feed gas mixture and ZSM-5 zeolite served as a support. Through the impregnation method, two varieties of catalysts, Ni/ZSM-5 and Ni-Mg/ZSM-5, were synthesized. By means of characterization techniques including BET, H2-TPR, H2-TPD, TEM, XRD, TG, in conjunction with the CO2 methanation experiments, the impacts of temperature (300-700 ℃), Ni loading (5%, 10%, 15%), and Mg promoter on the catalytic performance were investigated. The outcomes manifest that subsequent to the addition of the additive Mg into the Ni/ZSM-5 catalyst, the quantity of its surface active sites augmented remarkably, the particle size of Ni diminished conspicuously, the dispersibility was substantially ameliorated, the anti-coking property was fortified, the amount of carbon deposition was curtailed by around 0.354%, and the maximum CH4 yield was elevated by 6.7%. When the temperature was set at 650 ℃, the 15%Ni-Mg/ZSM-5 catalyst demonstrated the most outstanding methanation performance. Under such circumstances, its CO2 conversion, CH4 selectivity and CH4 yield were 79.2%, 75.5%, and 59.8%, respectively. Additionally, based on in situ infrared spectroscopy characterization and density functional theory calculations, formate was identified as an intermediate in the CO2 methanation pathway. The complete reaction pathway proceeds as follows:CO2+H2→CO2*+2H*→HCOO*→HCOOH*→H2COOH* →H2CO*→H2COH*→CH2*→CH3*→CH4*→CH4.

Key words

carbon dioxide methanation / catalyst / impregnation / density functional theory / zeolite / in situ FTIR

Cite this article

Download Citations
Xing Wanli, Lin Chuang, Cao Jingxuan, Yang Tianhua, Zhang Wanli, Kai Xingping. STUDY ON CATALYTIC METHANATION PERFORMANCE OF CARBON DIOXIDE AND HYDROGEN MIXTURE OF NICKEL-BASED CATALYST SUPPORTED BY ZSM-5[J]. Acta Energiae Solaris Sinica. 2025, 46(11): 792-800 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1301

References

[1] International Energy Agency(IEA). Global energy review 2025[M]. France: IEA, 2025.
[2] NAVARRO J C, CENTENO M A, LAGUNA O H, et al.Ru-Ni/MgAl2O4 structured catalyst for CO2 methanation[J]. Renewable energy, 2020, 161: 120-132.
[3] CHOI H, OH S, PARK J Y.High methane selective Pt cluster catalyst supported on Ga2O3 for CO2 hydrogenation[J]. Catalysis today, 2020, 352: 212-219.
[4] TSIOTSIAS A I, CHARISIOU N D, YENTEKAKIS I V, et al.Bimetallic Ni-based catalysts for CO2 methanation: a review[J]. Nanomaterials, 2021, 11(1): 28.
[5] LAM E, NOH G, LARMIER K, et al.CO2 hydrogenation on Cu-catalysts generated from ZnII single-sites: enhanced CH3OH selectivity compared to Cu/ZnO/Al2O3[J]. Journal of catalysis, 2021, 394: 266-272.
[6] YU W Z, FU X P, XU K, et al.CO2 methanation catalyzed by a Fe-Co/Al2O3 catalyst[J]. Journal of environmental chemical engineering, 2021, 9(4): 105594.
[7] WANG F G, TIAN X Y, SHI Y, et al.Photocatalytic CO2 methanation over the Ni/SiO2 catalysts for performance enhancement[J]. International journal of hydrogen energy, 2024, 68: 1382-1392.
[8] REN J, LEI H, MEBRAHTU C, et al.Ni-based hydrotalcite-derived catalysts for enhanced CO2 methanation: thermal tuning of the metal-support interaction[J]. Applied catalysis B: environmental, 2024, 340: 123245.
[9] DE PIANO G, ANDRADE GAMBOA J J, CONDÓ A M, et al. CO2 methanation over nickel-CeO2 catalyst supported on Al2O3: different impregnation strategies and Ni-Ce ratios[J]. International journal of hydrogen energy, 2024, 56: 1007-1019.
[10] ZHANG T F, ZHENG P, GAO J J, et al.Single-atom Ru alloyed with Ni nanoparticles boosts CO2 methanation[J]. Small, 2024, 20(12): 2308193.
[11] FU H, LIAN H L.Optimizing low-temperature CO2 methanation with aluminum-doped Ni/CeO2 catalysts: insights into reaction pathway adjustments and strong metal-support interactions[J]. Chemical engineering journal, 2024, 489: 151021.
[12] RIANI P, SPENNATI E, GARCIA M V, et al.Ni/Al2O3 catalysts for CO2 methanation: effect of silica and nickel loading[J]. International journal of hydrogen energy, 2023, 48(64): 24976-24995.
[13] 陶青青, 黄诗琳, 闫常峰, 等. 高活性Ni-Mo2C/ZrO2催化剂干重整甲烷制合成气[J]. 太阳能学报, 2019, 40(3): 831-837.
TAO Q Q, HUANG S L, YAN C F, et al.High activity of Ni-Mo2C/ZrO2 catalysts over dry reforming of methane for synthesis gas[J]. Acta energiae solaris sinica, 2019, 40(3): 831-837.
[14] JOMJAREE T, SINTUYA P, SRIFA A, et al.Catalytic performance of Ni catalysts supported on CeO2 with different morphologies for low-temperature CO2 methanation[J]. Catalysis today, 2021, 375: 234-244.
[15] BLANCO A, CAROCA J, TAMAYO R, et al.CO2 methanation activity of Ni-doped perovskites[J]. Fuel, 2022, 320: 123954.
[16] WANG K Y, HE X Q, LIANG X H.Ni-MgO catalyst prepared by a Sol-gel method for low temperature CO2 methanation[J]. International journal of hydrogen energy, 2024, 66: 195-207.
[17] MHADMHAN S, NGAMCHARUSSRIVICHAI C, HINCHIRANAN N, et al.Direct biogas upgrading via CO2 methanation to high-quality biomethane over NiMg/CNT-SiO2 fiber catalysts[J]. Fuel, 2022, 310: 122289.
[18] TAN J J, WANG J M, ZHANG Z Y, et al.Highly dispersed and stable Ni nanoparticles confined by MgO on ZrO2 for CO2 methanation[J]. Applied surface science, 2019, 481: 1538-1548.
[19] 李延吉, 伊嘉婧, 何强, 等. 碱改性HZSM-5热解生物质模型化合物影响研究[J]. 太阳能学报, 2022, 43(5): 383-390.
LI Y J, YI J J, HE Q, et al.Effect of alkali-modified HZSM-5 modified on catalytic pyrolysis of biomass model compounds[J]. Acta energiae solaris sinica, 2022, 43(5): 383-390.
[20] GAO N B, CHENG M X, QUAN C, et al.Syngas production via combined dry and steam reforming of methane over Ni-Ce/ZSM-5 catalyst[J]. Fuel, 2020, 273: 117702.
[21] GUO X P, TRAITANGWONG A, HU M X, et al.Carbon dioxide methanation over nickel-based catalysts supported on various mesoporous material[J]. Energy & fuels, 2018, 32(3): 3681-3689.
[22] 王小柳, 杨萌, 朱玲君, 等. 基于原位合成的Ni/Mg@MCM-41上的CO2甲烷化研究[J]. 燃料化学学报, 2020, 48(4): 456-465.
WANG X L, YANG M, ZHU L J, et al.CO2 methanation over Ni/Mg@MCM-41 prepared by in situ synthesis method[J]. Journal of fuel chemistry and technology, 2020, 48(4): 456-465.
[23] 付长亮, 王利平, 王少鹏, 等. 不同金属改性Ni/KIT-6催化剂的制备及其甲烷化性能研究[J]. 燃料化学学报, 2020, 48(4): 476-482.
FU C L, WANG L P, WANG S P, et al.Preparation and properties of Ni/KIT-6 catalysts modified with different metals for methanation of CO2[J]. Journal of fuel chemistry and technology, 2020, 48(4): 476-482.
[24] 邢万丽, 孙秋双, 杨天华, 等. 基于Ni/Al2O3整体式催化剂的生物质气化合成气甲烷化研究[J]. 太阳能学报, 2020, 41(3): 363-370.
XING W L, SUN Q S, YANG T H, et al.Study on methanation of biomass gasification syngas based on Ni/Al2O3 monolithic catalysts[J]. Acta energiae solaris sinica, 2020, 41(3): 363-370.
[25] 武瑞芳, 张因, 王永钊, 等. ZrO2助剂对Ni/SiO2催化剂CO甲烷化催化活性及其吸附性能的影响[J]. 燃料化学学报, 2009, 37(5): 578-582.
WU R F, ZHANG Y, WANG Y Z, et al.Effect of ZrO2 promoter on the catalytic activity for CO methanation and its adsorption performance of the Ni/SiO2 catalyst[J]. Journal of fuel chemistry and technology, 2009, 37(5): 578-582.
PDF(2412 KB)

Accesses

Citation

Detail

Sections
Recommended

/