PREPARATION AND PROPERTIES OF MODIFIED SEPIOLITE BASED COMPOSITE THERMAL STORAGE MATERIALS

Zhong Jinbao, Fan Haoxi, Wang Yongpeng, Zhang Jian, Meng Xiangyi, Feng Xianglong

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (11) : 129-135.

PDF(2536 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2536 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (11) : 129-135. DOI: 10.19912/j.0254-0096.tynxb.2024-1303

PREPARATION AND PROPERTIES OF MODIFIED SEPIOLITE BASED COMPOSITE THERMAL STORAGE MATERIALS

  • Zhong Jinbao1, Fan Haoxi1,2, Wang Yongpeng1, Zhang Jian1, Meng Xiangyi1, Feng Xianglong1
Author information +
History +

Abstract

Through physical modification methods such as washing, drying, and high-temperature calcination, sepiolite was treated to obtain modified sepiolite (ST). Using the vacuum adsorption method, ST was used as the support to prepare a lauric acid (LA) and palmitic acid (PA) binary eutectic composite phase change materials, resulting in modified sepiolite-based lauric acid-palmitic acid composite phase change heat storage materials (LA-PA/ST). The thermophysical properties, structural features, thermal conductivity and thermal reliability of the composite phase change materials (PCMs) were systematically investigated by testing methods such as differential scanning calorimeter (DSC), Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) thermogravimetric analyzer (TG), HotDisk analyzer and thermal cycling experiments. The results indicated that at an optimal adsorption mass ratio of LA-PA to ST of 1:5, LA-PA was uniformly distributed within the pores of ST and showed no leakage in the molten state. The thermal conductivity of pure LA-PA is 0.29 W/(m·K), whereas that of LA-PA/ST increases significantly to 1.26 W/(m·K). Additionally, the composite exhibited nearly no weight loss at 100 ℃, with initial 1% weight loss occurring at 128.36 ℃. After 200 thermal cycling experiments, the phase change temperature decreased by only 0.03 ℃. An experimental setup was constructed to evaluate the photothermal conversion performance, revealing a 461 s reduction in heat storage time and a 1711 s extension in heat release time. These experimental data demonstrate that LA-PA/ST possesses good thermal conductivity, thermal stability, and thermal cycling stability.

Key words

solar energy / phase change materials / thermal conductivity / thermal performance / stability

Cite this article

Download Citations
Zhong Jinbao, Fan Haoxi, Wang Yongpeng, Zhang Jian, Meng Xiangyi, Feng Xianglong. PREPARATION AND PROPERTIES OF MODIFIED SEPIOLITE BASED COMPOSITE THERMAL STORAGE MATERIALS[J]. Acta Energiae Solaris Sinica. 2025, 46(11): 129-135 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1303

References

[1] 马晓敏. 《世界能源统计年鉴2023》中文编译版发布[N]. 中国矿业报, 2023-11-23(2).
MA X M. 《The Chinese version of the World Energy Statistical Yearbook2023》has been released[N]. China mining news, 2023-11-23(2).
[2] 谭倩莉, 刘慧芳, 张铭驿, 等. 月桂酸/硬脂酸/纳米复合相变材料制备及性能研究[J]. 太阳能学报, 2024, 45(4): 532-539.
TAN Q L, LIU H F, ZHANG M Y, et al.Preparation and properties of lauric acid/stearic acid/nanocomposite phase change materials[J]. Acta energiae solaris sinica, 2024, 45(4): 532-539.
[3] 方桂花, 赵茂森, 孙鹏博. 基于棕榈酸-硬脂酸/膨胀石墨定形复合相变储能材料的制备与表征[J]. 材料导报, 2023, 37(20): 186-192.
FANG G H, ZHAO M S, SUN P B.Preparation and characterization of a shape-stabilized composite phase change material based on palmitic-stearic acid/expanded graphite for energy storage[J]. Materials reports, 2023, 37(20): 186-192.
[4] 杜文清, 费华, 顾庆军, 等. 癸酸-石蜡二元低共熔复合相变材料的制备及性能研究[J]. 太阳能学报, 2021, 42(7): 251-256.
DU W Q, FEI H, GU Q J, et al.Preparation and properties of capric acid-paraffin binary low eutectic composite phase change materials[J]. Acta energiae solaris sinica, 2021, 42(7): 251-256.
[5] 吴照学, 汤俊超, 梁伟, 等. 适用于苏北地区日光温室的相变材料筛选与测试[J]. 太阳能学报, 2023, 44(9): 264-272.
WU Z X, TANG J C, LIANG W, et al.Screening and testing of suitable phase change materials for solar greenhouses in northern Jiangsu[J]. Acta energiae solaris sinica, 2023, 44(9): 264-272.
[6] SUN M Y, LIU T, SHA H N, et al.A review on thermal energy storage with eutectic phase change materials: Fundamentals and applications[J]. Journal of energy storage, 2023, 68: 107713.
[7] 侯俊英, 杨金星, 郝建军, 等. 十八醇/ZIF-8定形复合相变材料制备及其蓄热器模拟[J]. 太阳能学报, 2023, 44(11): 434-442.
HOU J Y, YANG J X, HAO J J, et al.Fabrication of octadecanol/zif-8 shape stablized composite phase change material and thermal simulation of heat accumulator[J]. Acta energiae solaris sinica, 2023, 44(11): 434-442.
[8] 白瑞雪, 刘松阳, 王梦晴, 等. 膨胀蛭石基复合相变储热材料的制备及性能研究[J]. 可再生能源, 2024, 42(2): 182-188.
BAI R X, LIU S Y, WANG M Q, et al.Preparation and properties of expanded vermiculite-based composites[J]. Renewable energy resources, 2024, 42(2): 182-188.
[9] TOPÇU İ B, BAYRAM M, USTAOĞLU A, et al. Innovative cementitious mortar incorporated with sepiolite based shape-stable phase change material for thermal controlling of buildings[J]. Construction and building materials, 2024, 426: 136124.
[10] JIANG J Y, JU S Y, WANG F J, et al.Cement-based materials incorporated with polyethylene glycol/sepiolite composite phase change materials: hydration, mechanical, and thermal properties[J]. Journal of sustainable cement-based materials, 2024, 13(2): 311-323.
[11] XIE N, GAO X N, ZHONG Y, et al.Enhanced thermal performance of Na2HPO4·12H2O composite phase change material supported by sepiolite fiber for floor radiant heating system[J]. Journal of building engineering, 2022, 56: 104747.
[12] 高天飞. 相变储能技术的基础理论和实践应用[J]. 太阳能学报, 2024, 45(2): 500.
GAO T F.Phase change energy storage technology and practice[J]. Acta energiae solaris sinica, 2024, 45(2): 500.
[13] 罗凯, 叶伟梁, 王艳, 等. 太阳能生活热水系统相变储能研究进展[J]. 太阳能学报, 2022, 43(5): 220-229.
LUO K, YE W L, WANG Y, et al.Research progress of phase change energy storage in solar domestic hot water system[J]. Acta energiae solaris sinica, 2022, 43(5): 220-229.
[14] ZHAO L J, ZHAO Y F, WEI D Y, et al.Hierarchical porous carbon fiber felt loaded with polyethylene glycol as hybrid phase change energy storage sheet for temperature-controlled logistics[J]. Journal of energy storage, 2024, 97: 112779.
[15] GB/T 50176—1993, 民用建筑热工设计规范[S].
GB/T 50176—1993,Thermal design code for civil building[S].
[16] 陈超, 凌浩恕, 于楠, 等. 相变材料蓄热系数的计算方法[J]. 太阳能学报, 2018, 39(8): 2267-2272.
CHEN C, LING H S, YU N, et al.Calculation method of heat storage coefficient of phase change material[J]. Acta energiae solaris sinica, 2018, 39(8): 2267-2272.
PDF(2536 KB)

Accesses

Citation

Detail

Sections
Recommended

/