INFLUENCE OF DIFFERENT MOISTURE CONTENT OF SHIITAKE RESIDUE PARTICLES ON ITS ARCH EFFECT

Sun Hengyang, Li Zhen, Qiao Zhizhong, Lei Zhao, Li Bin, Xu Sheng

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (8) : 190-197.

PDF(3520 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(3520 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (8) : 190-197. DOI: 10.19912/j.0254-0096.tynxb.2024-1310

INFLUENCE OF DIFFERENT MOISTURE CONTENT OF SHIITAKE RESIDUE PARTICLES ON ITS ARCH EFFECT

  • Sun Hengyang1, Li Zhen1, Qiao Zhizhong1, Lei Zhao1, Li Bin1, Xu Sheng2
Author information +
History +

Abstract

The present study investigates the influence of the densification process of shiitake residue particles with different moisture contents on the arch effect. This investigation is achieved by using two methods: firstly, particle motion trajectory tracking experiments and secondly, discrete element simulation methods. By analyzing the movement trajectories of the four groups of shiitake residue particles with moisture contents of 8%, 10%, 12%, and 14% at four different stages of compression, the extent to which the particles are affected by the arching effect during the compression process is revealed. Research findings indicate that when the moisture content of the shiitake residue particles is 12%, deflection and displacement during particle movement reach their zenith, and are most influenced by the arch effect. It has been established that when the moisture content of the shiitake residue particles is 8%, the deflection and displacement during the particle movement are minimal, and the influence of the arch effect is negligible.

Key words

movement trajectories / densification / moisture content / shiitake residue particles / arch effect

Cite this article

Download Citations
Sun Hengyang, Li Zhen, Qiao Zhizhong, Lei Zhao, Li Bin, Xu Sheng. INFLUENCE OF DIFFERENT MOISTURE CONTENT OF SHIITAKE RESIDUE PARTICLES ON ITS ARCH EFFECT[J]. Acta Energiae Solaris Sinica. 2025, 46(8): 190-197 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1310

References

[1] FUFA B K, TADESSE B A, TULU M M.Cultivation of pleurotus ostreatus on agricultural wastes and their combination[J]. International journal of agronomy, 2021, 2021(1): 1465597.
[2] GANI A, NARUSE I.Effect of cellulose and lignin content on pyrolysis and combustion characteristics for several types of biomass[J]. Renewable energy, 2007, 32: 649-661.
[3] 岳强. 香菇菌渣和沙柳混配成型单位质量能耗研究[D]. 包头: 内蒙古科技大学, 2023.
YUE Q.Research on energy consumption per unit mass of mixed molding of mushroom residue and salix psammophila[D]. Baotou:Inner Mongolia University of Science and Technology, 2023.
[4] 张守玉, 黄健添, 郎森, 等. 生物质燃料颗粒热压成型过程分析[J]. 煤炭学报, 2024, 49(2): 1123-1137.
ZHANG S Y, HUANG J T, LANG S, et al.Analysis on hot briquetting mechanism of biomass fuel pellets[J]. Journal of China Coal Society, 2024, 49(2): 1123-1137.
[5] 管珣, 张琰, 徐云杰, 等. 原料粒径及含水率对樟叶颗粒燃料密度及机械耐久性的影响[J]. 农业工程学报, 2022, 38(14): 227-234.
GUAN X, ZHANG Y, XU Y J, et al.Effects of feedstock particle size and moisture content on the density and mechanical durability of camphor leaf pellet fuel[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(14): 227-234.
[6] 杨原青, 孙乾坤, 简鸿亮, 等. 国槐废弃物固体燃料热压成型优化分析[J]. 太阳能学报, 2024, 45(3): 178-185.
YANG Y Q, SUN Q K, JIAN H L, et al.Optimization analysis of hot pressing forming process solid fuel from sophora japonica forest waste[J]. Acta energiae solaris sinica, 2024, 45(3): 178-185.
[7] 王功亮, 姜洋, 李伟振, 等. 基于响应面法的玉米秸秆成型工艺优化[J]. 农业工程学报, 2016, 32(13): 223-227.
WANG G L, JIANG Y, LI W Z, et al.Process optimization of corn stover compression molding experiment based on response surface method[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(13): 223-227.
[8] 刘源, 缪馥星, 苗天德. 二维颗粒堆积体中力的传递与分布研究[J]. 岩土工程学报, 2005, 25(4): 468-473.
LIU Y, MU F X, MIAO T D.Force distributions in two dimensional granular packs[J]. Chinese journal of geotechnical engineering, 2005, 25(4): 468-473.
[9] 罗伟洲. 砂土中应力拱效应的试验与分析研究[D]. 广州: 华南理工大学, 2020.
LUO W Z.Experimental study and analysis on stress arch effect in sand[D]. Guangzhou: South China University of Technology, 2020.
[10] XU Z Y, MENG F J.Investigation of the flow and force chain characteristics of metal powder in high-velocity compaction based on a discrete element method[J]. Journal of the Korean Physical Society, 2021, 79(5):455-467.
[11] 张炜, 萧伟健, 袁传牛, 等. 离散元法铁粉末压制中粒径分布对力链演化机制的影响[J]. 力学学报, 2022, 54(9): 2489-2500.
ZHANG W, XIAO W J, YUAN C N, et al.Effect of particle size distribution on force chain evolution mechanism in iron power compaction by discrete element method[J]. Chinese journal of theoretical and applied mechanics, 2022, 54(9): 2489-2500.
[12] SHAH S, CHENG C, JALALI P,et al.Failure of confined granular media due to pullout of an intruder: from force networks to a system wide response[J]. Soft matter, 2020, 16(33): 7685-7695.
[13] 房营光, 候明勋, 谷任国, 等. 桩承式路堤中土拱效应产生过程可视化分析[J]. 岩土工程学报, 2015, 37(9): 1678-1684.
FANG Y G, HOU M X, GU R G, et al.Visual analysis of initiation of soil arching effect in piled embankments[J]. Chinese journal of geotechnical engineering, 2015, 37(9): 1678-1684.
[14] 李震, 高雨航, 刘彭, 等. 沙柳细枝颗粒致密成型过程中力链演变的离散元研究[J]. 太阳能学报, 2019, 40(11): 3186-3195.
LI Z, GAO Y H, LIU P, et al.Discrete element study on evolution of force-chain during salix grains dense molding[J]. Acta energiae solaris sinica, 2019, 40(11):3186-3195.
[15] NB/T 34024—2015, 生物质成型燃料质量分级[S].
NB/T 34024—2015, Quality classification for densified biofuel[S].
[16] FANG Y, GUO L, HOU M .Arching effect analysis of granular media based on force chain visualization[J]. Powder technology, 2020, 363:621-628.
[17] WANG M, ZHENG J, XUE S.Mechanics and stability of force chain arch in excavated granular material[J]. Applied sciences , 2024, 14(6):2485.
[18] WITTMER J P, CLAUDIN P, CATES M E, et al.An explanation for the central stress minimum in sand piles[J]. Nature, 1996, 382(6589): 336-338.
[19] 李震, 张冬会, 张鑫宇, 等. 香菇菌渣致密成型过程中颗粒黏结和断裂研究[J]. 锻压技术, 2023, 48(12): 188-195.
LI Z, ZHANG D H, ZHANG X Y, et al.Study on particle bonding and fracture during dense forming process of mushroom residue[J]. Forging & stamping technology, 2023, 48(12): 188-195.
[20] GB/T6003.1—2022, 试验筛技术要求和检验第1部分: 金属丝编织网试验筛[S].
GB/T6003.1—2022, Test sieves Technical requirements and testing Part 1: Test sieves of metal wire cloth[S].
[21] 闫文刚, 付九如, 李震, 等. 沙柳颗粒压缩成型过程宏细观模拟研究[J]. 太阳能学报, 2023, 44(9): 449-454.
YAN W G, FU J R, LI Z, et al.Research on macro and meso simulation in compression process of salix psammophila granules[J]. Acta energiae solaris sinica, 2023, 44(09): 449-454.
[22] 沙潜毅. 拱效应对沙柳生物质成型过程的影响研究[D]. 包头: 内蒙古科技大学, 2022.
SHA Q Y.Influence of arch effect on the salix biomass forming process[D]. Baotou: Inner Mongolia University of Science and Technology, 2022.
[23] LI Z, YU J, YUE Q, et al.Study on meso-mechanical mechanism and energy of moisture content on densification of salix psammophila particles[J]. Renewable energy, 2023, 205: 1071-1081.
[24] 石林榕, 赵武云, 孙伟. 基于离散元的西北旱区农田土壤颗粒接触模型和参数标定[J]. 农业工程学报, 2017, 33(21): 181-187.
SHI L R, ZHAO W Y, SUN W.Parameter calibration of soil particles contact model of farmland soil in northwest arid region based on discrete element method[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(21): 181-187.
PDF(3520 KB)

Accesses

Citation

Detail

Sections
Recommended

/