SIMULATION STUDY ON KEY METEOROLOGICAL FACTORS AFFECTING ATMOSPHERIC TRANSMITTANCE

Wang Chuanhui, Shen Yanbo, Jia Beixi, Hong Mei, Ailiyaer Aihaiti

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (12) : 378-384.

PDF(2464 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2464 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (12) : 378-384. DOI: 10.19912/j.0254-0096.tynxb.2024-1312

SIMULATION STUDY ON KEY METEOROLOGICAL FACTORS AFFECTING ATMOSPHERIC TRANSMITTANCE

  • Wang Chuanhui1, Shen Yanbo2,3, Jia Beixi2, Hong Mei4, Ailiyaer Aihaiti3
Author information +
History +

Abstract

Based on the hourly observations of surface temperature, air pressure, relative humidity, visibility, and other data from 170 meteorological stations in China from 2016 to 2023, the atmospheric transmittance under different distances between heliostats and receivers was calculated using the SMARTS model. A sensitivity experiment was conducted on typical representative stations. The average atmospheric transmittance under a distance of 1km between heliostats and receivers nationwide is generally between 70% and 90%. Regions with abundant solar energy resources, such as the Tibetan Plateau, northwest China, Inner Mongolia, and parts of northeast China, have higher atmospheric transmittance, exceeding 85%. After sunrise, the atmospheric transmittance at each representative station rapidly decreases and then gradually increases, with the lowest values appearing in the morning. Stations with lower visibility exhibit greater daily variations in atmospheric transmittance. Atmospheric transmittance is higher in the summer half-year and lower in the winter half-year. The sensitivity experiments indicate that atmospheric transmittance increases logarithmically with visibility. The impacts of other factors on atmospheric transmittance are also related to visibility. Lower visibility increases the sensitivity of atmospheric transmittance to changes in other factors. Atmospheric transmittance decreases with increasing relative humidity.

Key words

solar energy / solar irradiance / numerical simulation / solar thermal electric / atmospheric transmittance / sensitivity analysis

Cite this article

Download Citations
Wang Chuanhui, Shen Yanbo, Jia Beixi, Hong Mei, Ailiyaer Aihaiti. SIMULATION STUDY ON KEY METEOROLOGICAL FACTORS AFFECTING ATMOSPHERIC TRANSMITTANCE[J]. Acta Energiae Solaris Sinica. 2025, 46(12): 378-384 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1312

References

[1] 丁怡婷. 太阳能发电装机突破6亿千瓦[N]. 人民日报, 2024. 2024-01-31.
DING Y T. Solar power installed capacity exceeds 600 million kilowatts[N]. People’s daily, 2024. 2024-01-31.
[2] 张金平, 周强, 王定美, 等. 太阳能光热发电技术及其发展综述[J]. 综合智慧能源, 2023, 45(2): 44-52. ZHANG J P, ZHOU Q, WANG D M, et al. Review on solar thermal power generation technologies and their development[J]. Integrated intelligent energy, 2023, 45(2): 44-52.
[3] QIAN Y, WANG W G, LEUNG L R, et al. Variability of solar radiation under cloud-free skies in China: the role of aerosols[J]. Geophysical research letters, 2007, 34(12): 2006GL028800.
[4] PAPADIMAS C D, HATZIANASTASSIOU N, MATSOUKAS C, et al.The direct effect of aerosols on solar radiation over the broader Mediterranean basin[J]. Atmospheric chemistry and physics, 2012, 12(15): 7165-7185.
[5] WANG K C, DICKINSON R E, WILD M, et al.Atmospheric impacts on climatic variability of surface incident solar radiation[J]. Atmospheric chemistry and physics, 2012, 12(20): 9581-9592.
[6] ALEXANDRI G, GEORGOULIAS A K, BALIS D.Effect of aerosols, tropospheric NO2 and clouds on surface solar radiation over the eastern Mediterranean (Greece)[J]. Remote sensing, 2021, 13(13): 2587.
[7] 徐丽娜, 申彦波, 胡玥明, 等. 基于随机森林算法的FY-4A地表入射太阳辐射空间订正[J]. 太阳能学报, 2024, 45(1): 109-115.
XU L N, SHEN Y B, HU Y M, et al.Spatial correction of FY-4A surface solar radiation based on random forest algorithm[J]. Acta energiae solaris sinica, 2024, 45(1): 109-115.
[8] BALLESTRÍN J, MARZO A. Solar radiation attenuation in solar tower plants[J]. Solar energy, 2012, 86(1): 388-392.
[9] BALLESTRÍN J, MONTERREAL R, CARRA M E, et al. Measurement of solar extinction in tower plants with digital cameras[C]//Solarpaces 2015: International Conference on Concentrating Solar Power and Chemical Energy Systems. Cape Town, South Africa, 2016: 130002.
[10] BALLESTRÍN J, MONTERREAL R, CARRA M E, et al. Solar extinction measurement system based on digital cameras. Application to solar tower plants[J]. Renewable energy, 2018, 125: 648-654.
[11] ELIAS T, RAMON D, GARNERO M A, et al.Solar energy incident at the receiver of a solar tower plant, derived from remote sensing: computation of both DNI and slant path transmittance[C]//Solarpaces 2016: International Conference on Concentrating Solar Power and Chemical Energy Systems.Abu Dhabi, United Arab Emirates, 2017: 140005.
[12] GUEYMARD C A, LÓPEZ G, RAPP-ARRARÁS I. Atmospheric transmission loss in mirror-to-tower slant ranges due to water vapor[C]//Solarpaces 2016: International Conference on Concentrating Solar Power and Chemical Energy Systems. Abu Dhabi, United Arab Emirates, 2017: 140010.
[13] HANRIEDER N, GHENNIOUI A, ALAMI MERROUNI A, et al.Atmospheric transmittance model validation for CSP tower plants[J]. Remote sensing, 2019, 11(9): 1083.
[14] SHEN Y B, JIA B X, WANG C H, et al.Numerical simulation of atmospheric transmittance between heliostats and heat receiver in Tower-Type solar thermal power station[J]. Solar energy, 2023, 265: 112107.
[15] 刘兴冉, 张宏晔, 闫海明, 等. 区域复杂地形晴日太阳辐射估算研究[J]. 太阳能学报, 2022, 43(8): 174-180.
LIU X R, ZHANG H Y, YAN H M, et al.Estimation of regional solar radiation on clear days over complex terrian[J]. Acta energiae solaris sinica, 2022, 43(8): 174-180.
[16] 丁雪倩, 张淑花, 金存银. 复杂地形区晴空太阳辐射模型构建与应用[J]. 太阳能学报, 2024, 45(4): 569-577.
DING X Q, ZHANG S H, JIN C Y.Construction and application of clearsky solar radiation model over complex terrain[J]. Acta energiae solaris sinica, 2024, 45(4): 569-577.
[17] 宋艳华, 马金辉, 刘峰. 基于GIS的中国气温空间分布与分区初探[J]. 干旱区资源与环境, 2006, 20(4): 16-21.
SONG Y H, MA J H, LIU F.GIS-based primary study on the temperature spatial distribution and regionalization of China[J]. Journal of arid land resources and environment, 2006, 20(4): 16-21.
[18] FENG L, LIU Y X, FENG Z Z, et al.Analysing the spatiotemporal characteristics of climate comfort in China based on 2005—2018 MODIS data[J]. Theoretical and applied climatology, 2021, 143(3): 1235-1249.
[19] 赵煜飞, 朱亚妮. 中国地面均一化相对湿度月值格点数据集的建立[J]. 气象, 2017, 43(3): 333-340.
ZHAO Y F, ZHU Y N.Establishment of grid datasets of monthly homogenized surface relative humidities over China[J]. Meteorological monthly, 2017, 43(3): 333-340.
[20] NIU Z G, WANG L C, FANG L L, et al.Spatiotemporal variations in monthly relative humidity in China based on observations and CMIP5 models[J]. International journal of climatology, 2020, 40(15): 6382-6395.
[21] 王威, 王喜全, 王自发, 等. 中国能见度长期变化及区域特征分析[J]. 大气与环境光学学报, 2016, 11(4): 249.
WANG W, WANG X Q, WANG Z F, et al.Analysis of regional characteristics and long-term variations of visibility in China[J]. Journal of atmospheric and environmental optics, 2016, 11(4): 249.
[22] 王传辉, 申彦波, 姚锦烽, 等. 3种再分析资料在太阳能资源评估中的适用性[J]. 太阳能学报, 2022, 43(8): 164-173.
WANG C H, SHEN Y B, YAO J F, et al.Applicability of three reanalysis data in the assessment of solar energy resource in China[J]. Acta energiae solaris sinica, 2022, 43(8): 164-173.
[23] 马禹, 王旭, 黄镇, 等. 新疆沙尘天气的演化特征及影响因子[J]. 干旱区地理, 2006, 29(2): 178-185.
MA Y, WANG X, HUANG Z, et al.Change in space-time distribution of sand-dust and influence of climatic factors[J]. Arid land geography, 2006, 29(2): 178-185.
[24] GUO B, WANG Y Q, ZHANG X Y, et al.Temporal and spatial variations of haze and fog and the characteristics of PM2.5 during heavy pollution episodes in China from 2013 to 2018[J]. Atmospheric pollution research, 2020, 11(10): 1847-1856.
[25] WU C L, LIN Z H, SHAO Y P, et al.Drivers of recent decline in dust activity over East Asia[J]. Nature communications, 2022, 13: 7105.
[26] GUEYMARD C A.SMARTS, A simple model of the atmospheric radiative transfer of sunshine: algorithms and performance assessment[R]. Cocoa, FL: Florida: Florida solar energy center,1995.
PDF(2464 KB)

Accesses

Citation

Detail

Sections
Recommended

/