BI-LEVEL LOW-CARBON DISPATCH STRATEGY FOR INTEGRATED ENERGY SYSTEMS WITH RENEWABLE ENERGY CARBON RESPONSIBILITY SHARING

Zhou Xiulin, Wang Chunling, Liu Chunming, Yu Yiting

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (12) : 522-533.

PDF(5370 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(5370 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (12) : 522-533. DOI: 10.19912/j.0254-0096.tynxb.2024-1313

BI-LEVEL LOW-CARBON DISPATCH STRATEGY FOR INTEGRATED ENERGY SYSTEMS WITH RENEWABLE ENERGY CARBON RESPONSIBILITY SHARING

  • Zhou Xiulin, Wang Chunling, Liu Chunming, Yu Yiting
Author information +
History +

Abstract

To address the limitations of traditional carbon sharing mechanisms, which often overlook the additional emissions caused by the uncertainty of renewable energy generation, this paper puts forward a novel bi-level method aimed at achieving low-carbon dispatch in integrated energy systems. The strategy accounts for both renewable energy carbon responsibility sharing and the synergistic effects of various demand responses. Firstly, on the supply side, a stochastic optimization method based on scenario comparison is used to quantify the additional carbon emissions induced by renewable energy fluctuations. Secondly, an improved Shapley value-based approach is employed to allocate the residual carbon responsibility to load-side entities and to design a differentiated dynamic tiered carbon pricing mechanism, thereby addressing the combinatorial explosion problem arising from multiple stakeholders. Then, carbon pricing is combined with energy pricing to guide low-carbon demand responses on the load side, maximizing the carbon reduction efficiency of users. Finally, simulation studies on an integrated energy system with electric-thermal coupling verify the effectiveness of the proposed approach. The results indicate that the method accurately allocates carbon emission responsibilities among stakeholders. Moreover, the proposed dispatch strategy achieves a coordinated balance between carbon reduction and economic performance by effectively lowering emissions without compromising system cost-effectiveness.

Key words

integrated energy systems / renewable energy / demand response / low-carbon / carbon responsibility sharing mechanisms / Shapley value method

Cite this article

Download Citations
Zhou Xiulin, Wang Chunling, Liu Chunming, Yu Yiting. BI-LEVEL LOW-CARBON DISPATCH STRATEGY FOR INTEGRATED ENERGY SYSTEMS WITH RENEWABLE ENERGY CARBON RESPONSIBILITY SHARING[J]. Acta Energiae Solaris Sinica. 2025, 46(12): 522-533 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1313

References

[1] 舒印彪, 赵勇, 赵良, 等. “双碳” 目标下我国能源电力低碳转型路径[J]. 中国电机工程学报, 2023, 43(5): 1663-1672.
SHU Y B, ZHAO Y, ZHAO L, et al.Study on low carbon energy transition path toward carbon peak and carbon neutrality[J]. Proceedings of the CSEE, 2023, 43(5): 1663-1672.
[2] 袁越, 苗安康, 吴涵, 等. 低碳综合能源系统研究框架与关键问题研究综述[J]. 高电压技术: 1-18[2024-09-10].
YUAN Y, MIAO A K, WU H, et al.Review of the research framework and key issues for low-carbon integrated energy system[J]. High voltage engineering: 1-18[2024-09-10].
[3] 陈凯. 加快完善绿色税制助力实现“双碳”目标[J]. 宏观经济管理, 2024(4): 21-29.
CHEN K.To accelerate green tax policy improvement to help achieve the “dual carbon” goals[J]. Macroeconomic management, 2024(4): 21-29.
[4] 段新会, 黄嵘, 齐传杰, 等. 计及碳交易与需求响应的微能源网双层优化模型[J]. 太阳能学报, 2024, 45(3): 310-318.
HUANG X H, HUANG Y, QI C J, et al.Bi-level optimization model for micro energy grid considering carbon trading and demand response[J]. Acta energiae solaris sinica, 2024, 45(3): 310-318.
[5] 张贵鹏, 程静. 计及碳捕集的虚拟电厂-电制氢多主体协调优化[J]. 太阳能学报, 2023, 44(8): 92-101.
ZHANG G P, CHENG J, et al.Optimal dispatch of electricity-natural gas interconnection system considering source-load uncertainty and virtual power plant with carbon capture[J]. Acta energiae solaris sinica, 2023, 44(8): 92-101.
[6] 寇洋, 武家辉, 张华, 等. 考虑碳捕集与CVaR的电力系统低碳经济调度[J]. 电力系统保护与控制, 2023, 51(11): 131-140.
KOU Y, WU J H, ZHANG H, et al.Low carbon economic dispatch for a power system considering carbon capture and CVaR[J]. Power system protection and control, 2023, 51(11): 131-140.
[7] 周天睿, 康重庆, 徐乾耀, 等. 电力系统碳排放流分析理论初探[J]. 电力系统自动化, 2012, 36(7): 38-43, 85.
ZHOU T R, KANG C Q, XU Q Y, et al.Preliminary theoretical investigation on power system carbon emission flow[J]. Automation of electric power systems, 2012, 36(7): 38-43, 85.
[8] 周天睿, 康重庆, 徐乾耀, 等. 电力系统碳排放流的计算方法初探[J]. 电力系统自动化, 2012, 36(11): 44-49.
ZHOU T R, KANG C Q, XU Q Y, et al.Preliminary investigation on a method for carbon emission flow calculation of power system[J]. Automation of electric power systems, 2012, 36(11): 44-49.
[9] 刘可真, 李林耘, 林铮, 等. 考虑碳排放流的电-气互联系统源荷互动低碳经济调度[J]. 电力自动化设备, 2024, 44(5): 1-10.
LIU K Z, LI L Y, LIN Z, et al.Low-carbon economic dispatching of source-load interaction for electricity-gas system considering carbon emission flow[J]. Electric power automation equipment, 2024, 44(5): 1-10.
[10] 梁宁, 方茜, 徐慧慧, 等. 基于节点碳势需求响应的电力系统双层优化调度[J]. 电力系统自动化, 2024, 48(9): 44-53.
LIANG N, FANG Q, XU H H, et al.Bi-level optimal dispatching of power system based on demand response considering nodal carbon intensity[J]. Automation of electric power systems, 2024, 48(9): 44-53.
[11] 李姚旺, 张宁, 杜尔顺, 等. 基于碳排放流的电力系统低碳需求响应机制研究及效益分析[J]. 中国电机工程学报, 2022, 42(8): 2830-2842.
LI Y W, ZHANG N, DU E S, et al.Mechanism study and benefit analysis on power system low carbon demand response based on carbon emission flow[J]. Proceedings of the CSEE, 2022, 42(8): 2830-2842.
[12] 程昱舒, 郭晓霞, 刘青. 基于动态碳排放因子的台区碳减排收益量化模型[J/OL]. 现代电力: 1-9[2024-05-24].
CHENG Y S, GUO X X, LIU Q.Quantification model of carbon emission reduction benefits based on dynamic carbon emission factors in a substation area[J/OL]. Modern electric power: 1-9[2024-05-24].
[13] 陈丽霞, 孙弢, 周云, 等. 电力系统发电侧和负荷侧共同碳责任分摊方法[J]. 电力系统自动化, 2018, 42(19): 106-111.
CHEN L X, SUN T, ZHOU Y, et al.Method of carbon obligation allocation between generation side and demand side in power system[J]. Automation of electric power systems, 2018, 42(19): 106-111.
[14] 边晓燕, 吴珊, 赵健, 等. 考虑源荷碳责任分摊的新型电力系统多级灵活性资源规划[J]. 电力自动化设备, 2024, 44(2): 155-164.
BIAN X Y, WU S, ZHAO J, et al.Multi-level flexible resource planning of new power system considering source-load carbon responsibility allocation[J]. Electric power automation equipment, 2024, 44(2): 155-164.
[15] YIN G Z, WANG B X, DUAN M S, et al.Integrating more renewable electricity into the power system may increase carbon emissions[J]. Sustainable energy technologies and assessments, 2022, 49: 101796.
[16] WHEATLEY J.Quantifying CO2 savings from wind power[J]. Energy policy, 2013, 63: 89-96.
[17] CANG D B, CHEN C, CHEN Q, et al.Does new energy consumption conducive to controlling fossil energy consumption and carbon emissions? -Evidence from China[J]. Resources policy, 2021, 74: 102427.
[18] 陈厚合, 茅文玲, 张儒峰, 等. 基于碳排放流理论的电力系统源-荷协调低碳优化调度[J]. 电力系统保护与控制, 2021, 49(10): 1-11.
CHEN H H, MAO W L, ZHANG R F, et al.Low-carbon optimal scheduling of a power system source-load considering coordination based on carbon emission flow theory[J]. Power system protection and control, 2021, 49(10): 1-11.
[19] 刘哲远, 邢海军, 程浩忠, 等. 考虑碳排放流及需求响应的综合能源系统双层优化调度[J]. 高电压技术, 2023, 49(1): 169-178.
LIU Z Y, XIAN H J, CHENG H Z, et al.Bi-level optimal scheduling of integrated energy system considering carbon emission flow and demand response[J]. High voltage engineering, 2023, 49(1): 169-178.
[20] 石研, 李文杰, 杨凤玖, 等. 考虑碳责任分摊及需求响应的综合能源系统双层低碳优化调度[J/OL]. 现代电力, 1-14[2024-06-07].
SHI Y, LI W J, YANG F J, et al.Two-layer low-carbon optimized dispatching for integrated energy systems considering carbon liability allocation and demand response[J/OL]. Modern electric power, 1-14[2024-06-07].
[21] SENGUPTA S, SPENCER T, RODRIGUES N, et al.Current and future estimates of marginal emission factors for Indian power generation[J]. Environmental science & technology, 2022, 56(13): 9237-9250.
[22] NIU R Z, TIAN W Z, ZHANG Y C.Discriminating among generalized exponential, weighted exponential and weibull distributions[J]. Mathematics, 2023, 11(18): 3847.
[23] LIU Y J, DING K, ZHANG J W, et al.A self-data-driven method for lifetime prediction of PV arrays considering the uncertainty and volatility[J]. IEEE transactions on power electronics, 2024, 39(3): 3668-3682.
[24] 林舜江, 冯祥勇, 梁炜焜, 等. 新能源电力系统不确定优化调度方法研究现状及展望[J]. 电力系统自动化, 2024, 48(10): 20-41.
LIN S J, FENG X Y, LIANG W K, et al.Research status and prospect of uncertain optimal dispatch methods for renewable energy power systems[J]. Automation of electric power systems, 2024, 48(10): 20-41.
[25] 高建强, 宋铜铜, 杨东江. 燃煤发电机组碳排放折算方法研究与应用[J]. 热力发电, 2020, 49(2): 88-92.
GAO J Q, SONG T T, YANG D J.Research and application of carbon emission conversion method for coal-fired generating units[J]. Thermal power generation, 2020, 49(2): 88-92.
[26] BARROWS C, BLOOM A, EHLEN A, et al.The IEEE reliability test system: a proposed 2019 update[J]. IEEE transactions on power systems, 2019, 35(1): 119-127.
[27] 余昆, 唐修明, 陈星莺, 等. 高比例分布式光伏接入的配电网过电压责任分摊方法[J]. 中国电机工程学报, 2023, 43(24): 9535-9546.
YU K, TANG X M, CHEN X Y, et al.Allocation method of overvoltage responsibility in distribution network with high proportion distributed photovoltaic[J]. Proceedings of the CSEE, 2023, 43(24): 9535-9546.
[28] 段佳南, 谢俊, 赵心怡, 等. 基于改进Shapley值法的风-光-水-储多主体互补发电系统合作增益分配策略[J]. 电力自动化设备, 2024, 44(3): 22-30.
DUAN J N, XIE J, ZHAO X Y, et al.Cooperative synergistic benefit allocation strategy of wind-solar-hydro-energy storage multi-stakeholder complementary generation system based on improved Shapley value method[J]. Electric power automation equipment, 2024, 44(3): 22-30.
[29] 潘超, 范宫博, 王锦鹏, 等. 灵活性资源参与的电热综合能源系统低碳优化[J]. 电工技术学报, 2023, 38(6): 1633-1647.
PAN C, FAN G B, WANG J P, et al.Low-carbon optimization of electric and heating integrated energy system with flexible resource participation[J]. Transactions of China Electrotechnical Society, 2023, 38(6): 1633-1647.
[30] 崔杨, 邓贵波, 赵钰婷, 等. 考虑源荷低碳特性互补的含风电电力系统经济调度[J]. 中国电机工程学报, 2021, 41(14): 4799-4815.
CUI Y, DENG G B, ZHAO Y T, et al.Economic dispatch of power system with wind power considering the complementarity of low-carbon characteristics of source side and load side[J]. Proceedings of the CSEE, 2021, 41(14): 4799-4815.
PDF(5370 KB)

Accesses

Citation

Detail

Sections
Recommended

/