REHEAT STAGE STUDY OF SALT CAVERN COMPRESSED AIR ENERGY STORAGE SYSTEM

Li Xichen, Zhou Lingmin, Shou Enguang, Zhang Heng, Hua Liuyuan, Cai Guozheng

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (12) : 60-66.

PDF(1024 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1024 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (12) : 60-66. DOI: 10.19912/j.0254-0096.tynxb.2024-1326

REHEAT STAGE STUDY OF SALT CAVERN COMPRESSED AIR ENERGY STORAGE SYSTEM

  • Li Xichen, Zhou Lingmin, Shou Enguang, Zhang Heng, Hua Liuyuan, Cai Guozheng
Author information +
History +

Abstract

A system calculation program for the full cycle process of energy storage and release was written by Python for a salt cavern compressed air energy storage (CAES) project. The effects of the highest storage gas pressure, expansion throttle pressure, compressor discharge temperature, and reheat stages on the characteristics of the salt cavern CAES were studied. The results show that there is an optimal highest storage gas pressure and expansion throttle pressure for CAES with the same reheat stage. At this time, the total compression power consumption is the smallest and the conversion efficiency is highest. The system conversion efficiency increases with the increase of the compressor discharge temperature for CAES with the same reheat stage, but the change trend slows down. The one-stage reheat CAES with compressor discharge temperature of 400 ℃ has the smallest compressor work consumption, the lowest gas consumption rate, and the highest conversion efficiency. The highest conversion efficiency is 71.43%, which is 6.48% higher than that of the three-stage reheat type.

Key words

compressed air energy storage / underground gas storage / conversion efficiency / reheat stages / air storage pressure / throttle pressure

Cite this article

Download Citations
Li Xichen, Zhou Lingmin, Shou Enguang, Zhang Heng, Hua Liuyuan, Cai Guozheng. REHEAT STAGE STUDY OF SALT CAVERN COMPRESSED AIR ENERGY STORAGE SYSTEM[J]. Acta Energiae Solaris Sinica. 2025, 46(12): 60-66 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1326

References

[1] CONG R G.An optimization model for renewable energy generation and its application in China: a perspective of maximum utilization[J]. Renewable and sustainable energy reviews, 2013, 17: 94-103.
[2] 杨大慧, 文贤道, 钟晶亮, 等. AA-CAES系统释能过程安全减出力控制仿真分析[J]. 太阳能学报, 2023, 44(4): 283-289.
YANG D H, WEN X D, ZHONG J L, et al.Simulation analysis of runback conditions on energy release process of AA-CAES system[J]. Acta energiae solaris sinica, 2023, 44(4): 283-289.
[3] 张金宏, 杨建蒙, 李斌, 等. “光火储” 一体化发电系统的季节适应性分析[J]. 太阳能学报, 2024, 45(2): 300-308.
ZHANG J H, YANG J M, LI B, et al.Seasonal adaptability analysis of integrated power generation system of “photovoltaic thermal storage”[J]. Acta energiae solaris sinica, 2024, 45(2): 300-308.
[4] 黄际元, 李欣然, 曹一家, 等. 考虑储能参与快速调频动作时机与深度的容量配置方法[J]. 电工技术学报, 2015, 30(12): 454-464.
HUANG J Y, LI X R, CAO Y J, et al.Capacity allocation of energy storage system considering its action moment and output depth in rapid frequency regulation[J]. Transactions of China Electrotechnical Society, 2015, 30(12): 454-464.
[5] HADJIPASCHALIS I, POULLIKKAS A, EFTHIMIOU V.Overview of current and future energy storage technologies for electric power applications[J]. Renewable and sustainable energy reviews, 2009, 13(6/7): 1513-1522.
[6] 梅生伟, 公茂琼, 秦国良, 等. 基于盐穴储气的先进绝热压缩空气储能技术及应用前景[J]. 电网技术, 2017, 41(10): 3392-3399.
MEI S W, GONG M Q, QIN G L, et al.Advanced adiabatic compressed air energy storage system with salt cavern air storage and its application prospects[J]. Power system technology, 2017, 41(10): 3392-3399.
[7] 梅生伟, 张通, 张学林, 等. 非补燃压缩空气储能研究及工程实践: 以金坛国家示范项目为例[J]. 实验技术与管理, 2022, 39(5): 1-8, 14.
MEI S W, ZHANG T, ZHANG X L, et al.Research and engineering practice of non-supplementary combustion compressed air energy storage: taking Jintan national demonstration project as an example[J]. Experimental technology and management, 2022, 39(5): 1-8, 14.
[8] 黄焰, 王新超, 李峻. 300 MW压缩空气储能系统建模仿真[J]. 能源与节能, 2023(11): 59-63, 69.
HUANG Y, WANG X C, LI J.Modeling and simulation of 300 MW compressed air energy storage system[J]. Energy and energy conservation, 2023(11): 59-63, 69.
[9] 凌晨, 吴斌, 朱学成, 等. 350 MW级先进压缩空气储能系统建模与特性分析[J]. 能源研究与利用, 2023(5): 28-32.
LING C, WU B, ZHU X C, et al.Modeling and characteristic analysis of 350 MW advanced compressed air energy storage system[J]. Energy research & utilization, 2023(5): 28-32.
[10] 韩中合, 孙烨, 李鹏, 等. 不同输出方式下2种AA-CAES系统性能的对比研究[J]. 太阳能学报, 2022, 43(5): 60-66.
HAN Z H, SUN Y, LI P, et al.Comparative study on performance of two AA-CAES systems under different output modes[J]. Acta energiae solaris sinica, 2022, 43(5): 60-66.
[11] 郭欢, 许剑, 陈海生, 等. 一种定压运行AA-CAES的系统效率分析[J]. 热能动力工程, 2013, 28(5): 540-546, 558.
GUO H, XU J, CHEN H S, et al.Analysis of the efficiency of a AA-CAES system operating at a constant pressure[J]. Journal of engineering for thermal energy and power, 2013, 28(5): 540-546, 558.
[12] 韩中合, 周权, 王营营, 等. 先进绝热压缩空气储能(AA-CAES)系统一种结构优化方案[J]. 太阳能学报, 2016, 37(3): 629-635.
HAN Z H, ZHOU Q, WANG Y Y, et al.Analysis of two sorts of configurations of AA-CAES system[J]. Acta energiae solaris sinica, 2016, 37(3): 629-635.
[13] GUO Z G, DENG G Y, FAN Y C, et al.Performance optimization of adiabatic compressed air energy storage with ejector technology[J]. Applied thermal engineering, 2016, 94: 193-197.
PDF(1024 KB)

Accesses

Citation

Detail

Sections
Recommended

/