ANALYSIS OF OPERATION PERFORMANCE AND APPLICABILITY OF DISTRIBUTED ENERGY SYSTEMS IN RURAL SCENARIOS

Li Hanyu, Zhang Shicong, Wu Di, Liu Zhijian, Wu Kuanfei, Xing Jinlai

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (12) : 483-498.

PDF(2348 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2348 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (12) : 483-498. DOI: 10.19912/j.0254-0096.tynxb.2024-1332

ANALYSIS OF OPERATION PERFORMANCE AND APPLICABILITY OF DISTRIBUTED ENERGY SYSTEMS IN RURAL SCENARIOS

  • Li Hanyu1, Zhang Shicong2, Wu Di1, Liu Zhijian1, Wu Kuanfei3, Xing Jinlai4
Author information +
History +

Abstract

To analyze the suitable integrated energy system in rural areas, a multi time scale optimization method for rural multi regional integrated energy systems is proposed, considering the impact of system energy sources, energy storage settings, multi station collaboration mode, and grid connection distance on the rural integrated energy system. The results show that distributed energy systems in rural areas are more suitable for adopting a single station independent operation strategy. Multi time scale scheduling can improve system scheduling accuracy. In the scenario of not being connected to the grid, the total cost of renewable energy systems is 59.36% higher than that of fossil energy systems. In the scenario of grid connection, when the grid connection distance is 20 km, the economic efficiency of renewable energy systems is better than that of systems supplemented by fossil fuels, and the consumption rate of renewable energy is 62.5% higher than that of isolated operation. When the grid connection distance is greater than 40 km, the economy of the isolated operation system of the fossil energy supplementary supply is better, with a cost reduction of more than 10.15% compared to the renewable energy grid connection system. The selection of rural distributed energy systems should consider the distance between rural areas and the power grid.

Key words

distributed energy / rural areas / multiple zones / multi-time scales

Cite this article

Download Citations
Li Hanyu, Zhang Shicong, Wu Di, Liu Zhijian, Wu Kuanfei, Xing Jinlai. ANALYSIS OF OPERATION PERFORMANCE AND APPLICABILITY OF DISTRIBUTED ENERGY SYSTEMS IN RURAL SCENARIOS[J]. Acta Energiae Solaris Sinica. 2025, 46(12): 483-498 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1332

References

[1] SUN M X, CHEN G W, XU X B, et al.Reducing carbon footprint inequality of household consumption in rural areas: analysis from five representative provinces in China[J]. Environmental science & technology, 2021, 55(17): 11511-11520.
[2] 韩中合, 祁超, 丁敬, 等. 基于太阳能和生物质能的农村分布式供能系统研究[J]. 太阳能学报, 2019, 40(11): 3164-3171.
HAN Z H, QI C, DING J, et al.Research on distributed energy supply system based on solar energy and biomass energy in rural area[J]. Acta energiae solaris sinica, 2019, 40(11): 3164-3171.
[3] 刘艳峰, 杨燕子, 罗西. 关中农村不同类型家庭夏季柔性用能负荷多目标优化调度研究[J]. 太阳能学报, 2023, 44(8): 110-118.
LIU Y F, YANG Y Z, LUO X.Multi-objective optimization scheduling model of flexible energy consumption load in summer for different types of rural households in Guanzhong plain[J]. Acta energiae solaris sinica, 2023, 44(8): 110-118.
[4] 鲁玲, 苑涛, 王敏, 等. 考虑(㶲)效率的区域综合能源系统配置与调度双层优化[J]. 可再生能源, 2024, 42(10): 1381-1389.
LU L, YUAN T, WANG M, et al.Two-layer optimization of regional integrated energy system configuration and dispatching considering exergy efficiency[J]. Renewable energy resources, 2024, 42(10): 1381-1389.
[5] 王辉, 吴作辉, 李欣, 等. 含租赁共享储能的多微网与配电网的双层能量交易策略[J]. 电测与仪表, 2025, 62(6): 24-34.
WANG H, WU Z H, LI X, et al.Double-layer energy transaction strategy of multi-microgrids and distribution network with leased shared energy storage[J]. Electrical measurement and instrumentation, 2025, 62(6): 24-34.
[6] 陈佳琪. 多区域综合能源系统协同优化研究[D]. 北京: 北方工业大学, 2024.
CHEN J Q.Study on collaborative optimization of multi-regional integrated energy system[D]. Beijing: North China University of Technology, 2024.
[7] 钟永洁, 王紫东, 左建勋, 等.计及多时段尺度与地域分层的多能互补系统经济调度[J]. 综合智慧能源,2024, 46(4): 52-59.
ZHONG Y J, WANG Z D, ZUO J X.Economic dispatch of multi energy complementary systems considering multi period scales and regional stratification[J]. Integrated intelligent energy, 2024, 46(4): 52-59.
[8] 郑诗程, 许浩, 郎佳红, 等. 计及光伏不确定性的多区域综合能源系统多场景分布鲁棒优化调度[J]. 太阳能学报, 2024, 45(3): 460-469.
ZHENG S C, XU H, LANG J H, et al.Multi-scenario distributed robust optimal scheduling of multi-area integrated energy systems considering photovoltaic uncertainty[J]. Acta energiae solaris sinica, 2024, 45(3): 460-469.
[9] 程欣, 刘丽花, 张翔宇. 计及热负荷需求弹性共享的多区域电-热综合能源系统协调调度方法[J]. 山西电力, 2023(6): 6-10.
CHENG X, LIU L H, ZHANG X Y.Study on a coordinated dispatch method for multi-region electric-thermal integrated energy system considering elastic sharing of heat load demand[J]. Shanxi electric power, 2023(6): 6-10.
[10] 刘雪飞, 庞凝, 王云佳, 等. 农村综合能源系统多层协同优化运行方法[J]. 电力建设, 2022, 43(5): 63-71.
LIU X F, PANG N, WANG Y J.Multi-layer cooperative optimization operation method for rural integrated energy system[J]. Electric power construction, 2022, 43(5): 63-71.
[11] 王永利, 韩煦, 刘晨, 等. 基于生-光耦合利用的乡村电-热综合能源系统规划[J]. 电力建设, 2023, 44(3): 1-14.
WANG Y L, HAN X, LIU C, et al.Rural electricity-heat integrated energy system planning based on coupling utilization of biomass and solar resources[J]. Electric power construction, 2023, 44(3): 1-14.
[12] 李振, 赵鹏翔, 朱建军, 等. 考虑不确定性的生物质电热气肥耦合系统规划方法[J]. 农业工程, 2022, 12(3): 61-70.
LI Z, ZHAO P X, ZHU J J, et al.Optimal design of biomass integrated energy system coupled with electricity, heat, gas and fertilizer under uncertainty[J]. Agricultural engineering, 2022, 12(3): 61-70.
[13] 张林垚, 吴桂联, 倪识远, 等.考虑参数自适应阶梯碳交易的含混氢-碳捕集耦合的农村综合能源系统优化调度[J]. 电力科学与技术学报, 2024, 39(3): 228-241.
ZHANG L Y, WU G L,NI S Y, et al.Optimal scheduling of an integrated rural energy system with coupled hybrid hydrogen-carbon capture considering parameter adaptive stepped carbon trading[J]. Journal of electric power science and technology, 2024, 39(3): 228-241.
[14] DU S P, WU D, DAI Z, et al.Regional collaborative planning equipped with shared energy storage under multi-time scale rolling optimisation method[J]. Energy, 2023, 277: 127680.
[15] LIU X C, LIU X H, JIANG Y, et al.Photovoltaics and energy storage integrated flexible direct current distribution systems of buildings: definition, technology review, and application[J]. CSEE journal of power and energy systems, 2022, 9(3): 829-845.
[16] SCHROTENBOER A H, VEENSTRA A A T, UIT HET BROEK M A J, et al. A green hydrogen energy system: optimal control strategies for integrated hydrogen storage and power generation with wind energy[J]. Renewable and sustainable energy reviews, 2022, 168: 112744.
[17] ZHANG L H, LI S R, NIE Q Y, et al.A two-stage benefit optimization and multi-participant benefit-sharing strategy for hybrid renewable energy systems in rural areas under carbon trading[J]. Renewable energy, 2022, 189: 744-761.
[18] WANG Z, TAO H J, CAI W K, et al.Study on the multitime scale rolling optimization operation of a near-zero energy building energy supply system[J]. Energy conversion and management, 2022, 270: 116255.
[19] ZHANG R C, WANG D J, YU Z X, et al.Dual-objective optimization of large-scale solar heating systems integrated with water-to-water heat pumps for improved techno-economic performance[J]. Energy and buildings, 2023, 296: 113281.
[20] ZHANG C, XIE Y L, ZHANG H X, et al.Optimal design and performance assessment for a solar powered electricity, heating and hydrogen integrated energy system[J]. Energy, 2023, 262: 125453.
[21] LIU Z J, FAN G Y, SUN D K, et al.A novel distributed energy system combining hybrid energy storage and a multi-objective optimization method for nearly zero-energy communities and buildings[J]. Energy, 2022, 239: 122577.
[22] QIAO Y Y, HU F, XIONG W, et al.Multi-objective optimization of integrated energy system considering installation configuration[J]. Energy, 2023, 263: 125785.
PDF(2348 KB)

Accesses

Citation

Detail

Sections
Recommended

/