LOAD PREDICTION CONTROL FOR INDIVIDUAL PITCH SYSTEM BASED ON FFRLS

Jiang Ping, Geng Jinpeng, Zhang Tianyi, Fu Lei

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (12) : 701-707.

PDF(1747 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1747 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (12) : 701-707. DOI: 10.19912/j.0254-0096.tynxb.2024-1348

LOAD PREDICTION CONTROL FOR INDIVIDUAL PITCH SYSTEM BASED ON FFRLS

  • Jiang Ping, Geng Jinpeng, Zhang Tianyi, Fu Lei
Author information +
History +

Abstract

The article suggests a load prediction control strategy for the independent pitch system based on the online identification model of the parameters in an effort to address the impact of time-varying wind speed on the aerodynamic load coefficient of wind turbines and the ensuing increase in the unbalanced load of the wind turbine. Using FFRLS, the time-varying factors in the independent pitch system are first detected online. Based on these parameters, a multi-step prediction model is then built. Lastly, rolling optimization is used to determine the blade's pitch angle in real time. The experiments based on the NREL 5 MW wind turbine model in FAST-Matlab co-simulation validate the prediction accuracy of the multi-step prediction model constructed based on the online identification parameters and the benefits of the designed control strategy in mitigating the unbalanced load of the wind turbine.

Key words

individual pitch control / parameter identification / model predictive control / loads / wind power / pitch angle

Cite this article

Download Citations
Jiang Ping, Geng Jinpeng, Zhang Tianyi, Fu Lei. LOAD PREDICTION CONTROL FOR INDIVIDUAL PITCH SYSTEM BASED ON FFRLS[J]. Acta Energiae Solaris Sinica. 2025, 46(12): 701-707 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1348

References

[1] TANG S Z, TIAN D, HUANG M Y, et al.Load control optimization method for offshore wind turbine based on LTR[J]. Energy reports, 2021, 7: 4288-4297.
[2] 应有, 杨帆, 许国东. 大型风电机组独立变桨控制技术仿真与现场试验研究[J]. 太阳能学报, 2013, 34(5): 882-888.
YING Y, YANG F, XU G D.Simulation development and field testing of individual pitch control on wind turbines[J]. Acta energiae solaris sinica, 2013, 34(5): 882-888.
[3] 孙欣宇, 向东, 丁伟, 等. 基于麻雀搜索算法的风电机组独立变桨控制研究[J]. 太阳能学报, 2023, 44(10): 266-274.
SUN X Y, XIANG D, DING W, et al.Research on individual pitch control of wind turbine based on sparrow search algorithm[J]. Acta energiae solaris sinica, 2023, 44(10): 266-274.
[4] LI C C, HU J Q, YU J, et al.A review on the application of the mpc technology in wind power control of wind farms[J]. Journal of energy and power technology, 2021, 3(3): 1-22.
[5] PETROVIĆ V, JELAVIĆ M, BAOTIĆ M.MPC framework for constrained wind turbine individual pitch control[J]. Wind energy, 2021, 24(1): 54-68.
[6] 周嘉玉, 郝万君. 基于NMPC-PID的大型风力机独立变桨控制[J]. 机床与液压, 2023, 51(3): 151-155.
ZHOU J Y, HAO W J.Independent pitch control of large wind turbine based on NMPC-PID method[J]. Machine tool & hydraulics, 2023, 51(3): 151-155.
[7] 王多睿, 王维庆, 蔡鑫. 基于NMPC-PID的风力机独立变桨距控制策略研究[J]. 太阳能学报, 2017, 38(9): 2520-2526.
WANG D R, WANG W Q, CAI X.Research on control strategy of individual pitch control of wind turbine base on NMPC-PID[J]. Acta energiae solaris sinica, 2017, 38(9): 2520-2526.
[8] LAI X, WENG J H, HUANG Y F, et al.A joint state-of-health and state-of-energy estimation method for lithium-ion batteries through combining the forgetting factor recursive least squares and unscented Kalman filter[J]. Measurement, 2022, 205: 112187.
[9] 张天翼. 风力发电系统模型预测变桨距控制策略研究[D]. 保定: 河北大学, 2024.
ZHANG T Y.Research on model predictive variable pitch control strategy for wind power generation system[D]. Baoding: Hebei University, 2024.
PDF(1747 KB)

Accesses

Citation

Detail

Sections
Recommended

/