POWER ADAPTIVE CONTROL STRATEGY BASED ON OPTIMAL EFFICIENCY OF HYDROGEN PRODUCTION SYSTEM

Zhang Xiaowei, Bai Mingchuan, Su Xingyu, Zhou Jinghua

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (12) : 126-135.

PDF(3347 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(3347 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (12) : 126-135. DOI: 10.19912/j.0254-0096.tynxb.2024-1355

POWER ADAPTIVE CONTROL STRATEGY BASED ON OPTIMAL EFFICIENCY OF HYDROGEN PRODUCTION SYSTEM

  • Zhang Xiaowei1,2, Bai Mingchuan1,2, Su Xingyu1,2, Zhou Jinghua1,2
Author information +
History +

Abstract

In order to guarantee the stable and efficient operation of the new energy electrolysis hydrogen production system, a hydrogen production system efficiency model was first constructed, encompassing the PEM electrolyser, hydrogen production power supply, compression, drying, circulating cooling, and other auxiliary links. A power-adaptive control strategy based on the optimal efficiency of the hydrogen production system was proposed based on this model. The strategy takes the optimal efficiency of the hydrogen production system as the goal and combines it with the power control of the hydrogen production power supply. Matlab/Simulink simulations was carried out in order to facilitate a comparison of the efficiency curves of the hydrogen production system under the chain distribution strategy, the average distribution strategy and the proposed optimization strategy. The results demonstrate that the strategy proposed in this paper serves to enhance the application range of the hydrogen production system for high-efficiency work and to improve the utilization of new energy.

Key words

electrolysis / hydrogen production / proton exchange membrane / power supply / multi-stack electrolysis for hydrogen production / power distribution

Cite this article

Download Citations
Zhang Xiaowei, Bai Mingchuan, Su Xingyu, Zhou Jinghua. POWER ADAPTIVE CONTROL STRATEGY BASED ON OPTIMAL EFFICIENCY OF HYDROGEN PRODUCTION SYSTEM[J]. Acta Energiae Solaris Sinica. 2025, 46(12): 126-135 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1355

References

[1] HOSSEINI S E, WAHID M A.Hydrogen from solar energy, a clean energy carrier from a sustainable source of energy[J]. International journal of energy research, 2020, 44(6): 4110-4131.
[2] 俞红梅, 邵志刚, 侯明, 等. 电解水制氢技术研究进展与发展建议[J]. 中国工程科学, 2021, 23(2): 146-152.
YU H M, SHAO Z G, HOU M, et al.Hydrogen production by water electrolysis: progress and suggestions[J]. Strategic study of CAE, 2021, 23(2): 146-152.
[3] CHO M K, PARK H Y, LEE H J, et al.Alkaline anion exchange membrane water electrolysis: effects of electrolyte feed method and electrode binder content[J]. Journal of power sources, 2018, 382: 22-29.
[4] FANG R M, LIANG Y.Control strategy of electrolyzer in a wind-hydrogen system considering the constraints of switching times[J]. International journal of hydrogen energy, 2019, 44(46): 25104-25111.
[5] 沈小军, 聂聪颖, 吕洪. 计及电热特性的离网型风电制氢碱性电解槽阵列优化控制策略[J]. 电工技术学报, 2021, 36(3): 463-472.
SHEN X J, NIE C Y, LYU H.Coordination control strategy of wind power-hydrogen alkaline electrolyzer bank considering electrothermal characteristics[J]. Transactions of China Electrotechnical Society, 2021, 36(3): 463-472.
[6] WON W, KWON H, HAN J H, et al.Design and operation of renewable energy sources based hydrogen supply system: technology integration and optimization[J]. Renewable energy, 2017, 103: 226-238.
[7] 魏繁荣, 随权, 林湘宁, 等. 考虑制氢设备效率特性的煤风氢能源网调度优化策略[J]. 中国电机工程学报, 2018, 38(5): 1428-1439.
WEI F R, SUI Q, LIN X N, et al.Energy control scheduling optimization strategy for coal-wind-hydrogen energy grid under consideration of the efficiency features of hydrogen production equipment[J]. Proceedings of the CSEE, 2018, 38(5): 1428-1439.
[8] 张勇, 彭勇刚, 韦巍. 计及制氢效率的光-储-氢系统协调控制策略研究[J]. 太阳能学报, 2021, 42(11): 67-75.
ZHANG Y, PENG Y G, WEI W.Coordination control for PV, storage and hydrogen system considering hydrogen energy conversion efficiency[J]. Acta energiae solaris sinica, 2021, 42(11): 67-75.
[9] 孙东阳, 于继轩, 阮俊霖, 等. 基于制氢装置效率特性的风储制氢电厂优化控制策略[J]. 电力自动化设备, 2023, 43(12): 53-61.
SUN D Y, YU J X, RUAN J L, et al.Optimal control strategy of wind-energy storage hydrogen production power plant based on efficiency characteristics of hydrogen production device[J]. Electric power automation equipment, 2023, 43(12): 53-61.
[10] 牛萌, 洪振鹏, 李蓓, 等. 考虑制氢效率提升的风电制氢系统优化控制策略[J]. 太阳能学报, 2023, 44(9): 366-376.
NIU M, HONG Z P, LI B, et al.Optimal control strategy of wind power to hydrogen system considering electrolyzer efficiency improvement[J]. Acta energiae solaris sinica, 2023, 44(9): 366-376.
[11] 王加荣, 杨博, 张芮, 等. 基于风电预测的碱性电解槽系统优化控制[J]. 电网技术, 2024, 48(7): 2940-2947.
WANG J R, YANG B, ZHANG R, et al.Optimization control of alkaline electrolyzer system based on wind power prediction[J]. Power system technology, 2024, 48(7): 2940-2947.
[12] BAREIß K, DE LA RUA C, MÖCKL M, et al. Life cycle assessment of hydrogen from proton exchange membrane water electrolysis in future energy systems[J]. Applied energy, 2019, 237: 862-872.
[13] SAKAS G, IBÁÑEZ-RIOJA A, RUUSKANEN V, et al. Dynamic energy and mass balance model for an industrial alkaline water electrolyzer plant process[J]. International journal of hydrogen energy, 2022, 47(7): 4328-4345.
[14] 马皓, 祁丰. 一种改进的LLC变换器谐振网络参数设计方法[J]. 中国电机工程学报, 2008, 28(33): 6-11.
MA H, QI F.An improved design method for resonant tank parameters of LLC resonant converter[J]. Proceedings of the CSEE, 2008, 28(33): 6-11.
[15] 陈威, 吕征宇. 第四类LLC谐振变流器模块功能准同构拓扑探求及变形研究[J]. 中国电机工程学报, 2009, 29(9): 35-42.
CHEN W, LYU Z Y.Investigation on set of quasi-isomorphic topologies and structural variations of type-4 LLC resonant DC-DC converter based on module function identification[J]. Proceedings of the CSEE, 2009, 29(9): 35-42.
PDF(3347 KB)

Accesses

Citation

Detail

Sections
Recommended

/