DUAL-LAYER OPTIMIZATION CONFIGURATION OF SHARED ENERGY STORAGE SYSTEM CONSIDERING UNCERTAINTY OF CHARGING TIME SEQUENCE OF ELECTRIC VEHICLES

Deng Tianxiang, Dou Yinke, Gao Liang, Zhao Yuning, Hao Wenhui

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (12) : 52-59.

PDF(1112 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1112 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (12) : 52-59. DOI: 10.19912/j.0254-0096.tynxb.2024-1360

DUAL-LAYER OPTIMIZATION CONFIGURATION OF SHARED ENERGY STORAGE SYSTEM CONSIDERING UNCERTAINTY OF CHARGING TIME SEQUENCE OF ELECTRIC VEHICLES

  • Deng Tianxiang1,2, Dou Yinke1,2, Gao Liang3, Zhao Yuning1,2, Hao Wenhui1,2
Author information +
History +

Abstract

Shared energy storage is a new type of energy storage business model, which can freely and flexibly choose energy storage capacity according to different scenarios. In this paper, based on shared energy storage power station, considering the uncertainty of electric rehicles(EV) charging timing, a two-layer optimization model of capacity optimization configuration and system optimization operation of energy storage power station is established. Firstly, a prediction of the spatiotemporal distribution of EV charging is proposed and its power is calculated, and then a two-layer optimization model is established considering the optimal configuration of operation and capacity. The two-layer optimization model is transformed into a single-layer nonlinear optimization problem by using Karush-Kuhn-Tucher(KKT) condition, and finally the nonlinear problem is transformed into a linear problem by using large M method. The calculation examples show that, considering the charging load of electric vehicles, the shared energy storage mode can take advantage of the complementarity of different micro-grids, reduce the system operation cost, improve the profitability of shared energy storage power stations, and achieve a win-win situation between users and power stations.

Key words

electric vehicles / microgrids / electric loads / shared energy storage / dual-layer optimization / electric vehicle charging timing uncertainty

Cite this article

Download Citations
Deng Tianxiang, Dou Yinke, Gao Liang, Zhao Yuning, Hao Wenhui. DUAL-LAYER OPTIMIZATION CONFIGURATION OF SHARED ENERGY STORAGE SYSTEM CONSIDERING UNCERTAINTY OF CHARGING TIME SEQUENCE OF ELECTRIC VEHICLES[J]. Acta Energiae Solaris Sinica. 2025, 46(12): 52-59 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1360

References

[1] 张志, 邵尹池, 伦涛, 等. 电化学储能系统参与调峰调频政策综述与补偿机制探究[J]. 电力工程技术, 2020, 39(5): 71-77, 84.
ZHANG Z, SHAO Y C, LUN T, et al.Review on the policies and compensation mechanism of BESS participation in the auxiliary service of frequency and peak modulation[J]. Electric power engineering technology, 2020, 39(5): 71-77, 84.
[2] China News Service.Shared energy storage in China increased new energy generation by over 100 million kWh for the first time[EB/OL]. https://www.chinanews.com.cn/ny/2022/03-11/9699559. shtml.
[3] 刘敦楠, 赵宁宁, 李鹏飞, 等. 基于“共享储能-需求侧资源” 联合跟踪可再生能源发电曲线的市场化消纳模式[J]. 电网技术, 2021, 45(7): 2791-2802.
LIU D N, ZHAO N N, LI P F, et al.Market-oriented consumption model based on the joint tracking of renewable energy generation curve of “shared energy storage & demand side resources”[J]. Power system technology, 2021, 45(7): 2791-2802.
[4] 谢雨龙, 罗逸飏, 李智威, 等. 考虑微网新能源经济消纳的共享储能优化配置[J]. 高电压技术, 2022, 48(11): 4403-4413.
XIE Y L, LUO Y Y, LI Z W, et al.Optimal allocation of shared energy storage considering the economic consumption of microgrid new energy[J]. High voltage engineering, 2022, 48(11): 4403-4413.
[5] 李建林, 崔宜琳, 马速良, 等. 需求侧共享储能的运营模式优化及其经济效益分析研究[J]. 电网技术, 2022, 46(12): 4954-4969.
LI J L, CUI Y L, MA S L, et al.Operation mode optimization and economic benefit analysis of demand-side shared energy storage[J]. Power system technology, 2022, 46(12): 4954-4969.
[6] 吴玮坪, 胡泽春, 宋永华. 结合随机规划和序贯蒙特卡洛模拟的风电场储能优化配置方法[J]. 电网技术, 2018, 42(4): 1055-1062.
WU W P, HU Z C, SONG Y H.Optimal sizing of energy storage system for wind farms combining stochastic programming and sequential Monte Carlo simulation[J]. Power system technology, 2018, 42(4): 1055-1062.
[7] 喻颖倩, 何川, 刘天琪, 等. 计及储能调频与寿命损耗的多套餐共享储能主从博弈分布鲁棒定价方法研究[J]. 中国电机工程学报, 2025, 45(4): 1450-1465.
YU Y Q, HE C, LIU T Q, et al.Research on robust pricing method of shared energy storage multi-package master-slave game distributed robust considering energy storage frequency modulation and life loss[J]. Proceedings of the CSEE, 2025, 45(4): 1450-1465.
[8] 臧云帆, 夏晟, 李嘉文, 等. 含共享储能的微电网群分布鲁棒博弈优化调度方法[J]. 电力系统保护与控制, 2023, 51(24): 90-101.
ZANG Y F, XIA S, LI J W, et al.A robust game optimization scheduling method for shared energy storage micro electric network group distribution[J]. Power system protection and control, 2023, 51(24): 90-101.
[9] 孙英聪, 陈来军, 李笑竹, 等. 考虑资源相关性的新能源场站群集中式共享储能优化配置[J]. 太阳能学报, 2024, 45(7): 2-9.
SUN Y C, CHEN L J, LI X Z, et al.Optimal allocation of centralized shared energy storage for renewable energy station clusters with consideration of resource correlation[J]. Acta energiae solaris sinica, 2024, 45(7): 2-9.
[10] 杨健维, 李爱, 廖凯. 城际高速路网中光储充电站的定容规划[J]. 电网技术, 2020, 44(3): 934-943.
YANG J W, LI A, LIAO K.Capacity planning of light storage charging station for intercity highways based on charging guidance[J]. Power system technology, 2020, 44(3): 934-943.
[11] 邵尹池, 穆云飞, 余晓丹, 等. “车-路-网” 模式下电动汽车充电负荷时空预测及其对配电网潮流的影响[J]. 中国电机工程学报, 2017, 37(18): 5207-5219, 5519.
SHAO Y C, MU Y F, YU X D, et al.A spatial-temporal charging load forecast and impact analysis method for distribution network using EVs-traffic-distribution model[J]. Proceedings of the CSEE, 2017, 37(18): 5207-5219, 5519.
[12] 闫丽梅, 曾家威, 徐建军, 等. 含电动汽车和光伏的配电网演化动态博弈调度策略[J]. 太阳能学报, 2024, 45(5): 316-323.
YAN L M, ZENG J W, XU J J, et al.Scheduling strategy of distribution grid with electric vehicles and photolatic based on evolutionary dynamics game[J]. Acta energiae solaris sinica, 2024, 45(5): 316-323.
[13] 陆燕娟, 潘庭龙, 杨朝辉. 计及电动汽车的社区微网储能容量配置[J]. 太阳能学报, 2021, 42(12): 362-367.
LU Y J, PAN T L, YANG C H.Energy storage capacity configuration in community microgrid considering electric vehicles[J]. Acta energiae solaris sinica, 2021, 42(12): 362-367.
[14] 王成山, 洪博文, 郭力, 等. 冷热电联供微网优化调度通用建模方法[J]. 中国电机工程学报, 2013, 33(31): 26-33, 3.
WANG C S, HONG B W, GUO L, et al.A general modeling method for optimal dispatch of combined cooling, heating and power microgrid[J]. Proceedings of the CSEE, 2013, 33(31): 26-33, 3.
[15] 闫东翔, 陈玥. 共享储能商业模式和定价机制研究综述[J]. 电力系统自动化, 2022, 46(23): 178-191.
YAN D X, CHEN Y.Review on business model and pricing mechanism for shared energy storage[J]. Automation of electric power systems, 2022, 46(23): 178-191.
[16] 徐青山, 李淋, 盛业宏, 等. 冷热电联供型多微网主动配电系统日前优化经济调度[J]. 电网技术, 2018, 42(6): 1726-1735.
XU Q S, LI L, SHENG Y H, et al.Day-ahead optimized economic dispatch of active distribution power system with combined cooling, heating and power-based microgrids[J]. Power system technology, 2018, 42(6): 1726-1735.
[17] 欧阳明高. 我国节能与新能源汽车发展战略与对策[J]. 汽车工程, 2006, 28(4): 317-321.
OUYANG M G.Development strategy and countermeasures of energy-saving and new energy vehicles in China[J]. Automotive engineering, 2006, 28(4): 317-321.
[18] DOUCETTE R T, MCCULLOCH M D.Modeling the prospects of plug-in hybrid electric vehicles to reduce CO2 emissions[J]. Applied energy, 2011, 88(7): 2315-2323.
[19] 董晓红, 孔华志, 丁飞, 等. 考虑电池老化的电动汽车中长期充电负荷预测方法[J]. 电力系统自动化, 2024, 48(13): 109-119.
DONG X H, KONG H Z, DING F, et al.Medium-and long-term charging load forecasting method for electric vehicles considering battery aging[J]. Automation of electric power systems, 2024, 48(13): 109-119.
[20] 田立亭, 史双龙, 贾卓. 电动汽车充电功率需求的统计学建模方法[J]. 电网技术, 2010, 34(11): 126-130.
TIAN L T, SHI S L, JIA Z.A statistical model for charging power demand of electric vehicles[J]. Power system technology, 2010, 34(11): 126-130.
[21] ZHANG S Y, ZHANG K S, ZHANG G, et al.The bi-level optimization model research for energy-intensive load and energy storage system considering congested wind power consumption[J]. Processes, 2022, 10(1): 51.
[22] SINHA A, SOUN T, DEB K.Using Karush-Kuhn-Tucker proximity measure for solving bilevel optimization problems[J]. Swarm and evolutionary computation, 2019, 44: 496-510.
[23] 李淋, 徐青山, 王晓晴, 等. 基于共享储能电站的工业用户日前优化经济调度[J]. 电力建设, 2020, 41(5): 100-107.
LI L, XU Q S, WANG X Q, et al.Optimal economic scheduling of industrial customers on the basis of sharing energy-storage station[J]. Electric power construction, 2020, 41(5): 100-107.
PDF(1112 KB)

Accesses

Citation

Detail

Sections
Recommended

/