MECHANISM OF RADIAL RESISTIVITY VARIATION IN A LARGE DIAMETER CONTINUOUS CRYSTAL PULLING PROCESS

He Xian, Li Jin, Wang Zhongliang, Bai Nan, Qu Li, Zhou Chunling

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (12) : 271-276.

PDF(1867 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1867 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (12) : 271-276. DOI: 10.19912/j.0254-0096.tynxb.2024-1364

MECHANISM OF RADIAL RESISTIVITY VARIATION IN A LARGE DIAMETER CONTINUOUS CRYSTAL PULLING PROCESS

  • He Xian, Li Jin, Wang Zhongliang, Bai Nan, Qu Li, Zhou Chunling
Author information +
History +

Abstract

Utilizing CGSim, a professional crystal growth simulation software developed and designed by STR, combining crystal dynamics and thermodynamics, selecting N-type monocrystalline silicon commonly used dopant phosphorus is selected, according to the polycrystalline silicon mass of 10-7 times to add phosphorus monomers as dopant, meanwhile selecting eight different crucible rotate speeds of 7-14 r/min and six different crystal rotate speeds of 6-11 r/min are selected, and orthogonal simulation experiments with a higher crystal pulling rate of 1.8 mm/min were conducted to obtain the change of electrical resistivity. By analyzing the parameters of inner crucible melt temperature field and flow field, outer crucible melt temperature field and flow field, solid-liquid interface, defects in the crystal, appropriate crucible rotational speed and crystal rotational speed were obtained. By comparing with the radial resistivity change obtained by converting the phosphorus concentration to the resistivity at the solid-liquid interface, the influencing mechanism of the radial resistivity of the continuous direct-drawing monocrystalline silicon was researched.

Key words

monocrystalline silicon / solid-liquid interface / numerical simulation / resistivity

Cite this article

Download Citations
He Xian, Li Jin, Wang Zhongliang, Bai Nan, Qu Li, Zhou Chunling. MECHANISM OF RADIAL RESISTIVITY VARIATION IN A LARGE DIAMETER CONTINUOUS CRYSTAL PULLING PROCESS[J]. Acta Energiae Solaris Sinica. 2025, 46(12): 271-276 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1364

References

[1] 张云龙, 陈新亮, 周忠信, 等. 晶体硅太阳电池研究进展[J]. 太阳能学报, 2021, 42(10): 49-60.
ZHANG Y L, CHEN X L, ZHOU Z X, et al.Research progress of crystalline silicon solar cells[J]. Acta energiae solaris sinica, 2021, 42(10): 49-60.
[2] 庞炳远, 闫萍. 区熔高阻硅单晶电阻率均匀性控制技术研究[J]. 电子工业专用设备, 2017, 46(6): 6-9, 33.
PANG B Y, YAN P.Study on the uniform control technology of silicon single crystal resistivity[J]. Equipment for electronic products manufacturing, 2017, 46(6): 6-9, 33.
[3] GIANNATTASIO A.A simplified model to predict resistivity profiles in continuous-feeding Cz-silicon crystals[J]. Journal of crystal growth, 2020, 542: 125686.
[4] WANG J H.Resistivity distribution in bulk growth of silicon single crystals[J]. Journal of crystal growth, 2005, 275(1/2): e73-e78.
[5] ZU Y B, LI S Y, LV G Q, et al.Study on the influence of the pulling rate on the axial and radial uniformity of gallium in czochralski monocrystalline silicon crystal[J]. Silicon, 2023, 15(14): 6073-6084.
[6] XU H.Characterization of n-type mono-crystalline silicon ingots produced by continuous Czochralski (Cz) technology[J]. Energy procedia, 2015, 77: 658-664.
[7] ANSELMO A, PRASAD V, KOZIOL J, et al.Numerical and experimental study of a solid pellet feed continuous Czochralski growth process for silicon single crystals[J]. Journal of crystal growth, 1993, 131(1/2): 247-264.
[8] 张三洋, 沈鸿烈, 魏青竹, 等. 再生处理抑制单晶硅太阳电池光致衰减效应的研究[J]. 太阳能学报, 2018, 39(6): 1625-1629.
ZHANG S Y, SHEN H L, WEI Q Z, et al.Study of restraining light-induced decay effect of mono crystalline silicon solar cell by regeneration treatment[J]. Acta energiae solaris sinica, 2018, 39(6): 1625-1629.
[9] GIANNATTASIO A, GIAQUINTA A, PORRINI M.The accuracy of the standard resistivity-concentration conversion practice estimated by measuring the segregation coefficient of boron and phosphorous in Cz-Si[J]. physica status solidi (a), 2011, 208(3): 564-567.
[10] GB/T 13389—2014, 掺硼掺磷掺砷硅单晶电阻率与掺杂剂浓度换算规程[S].
GB/T 13389—2014, Practice for conversion between resistivity and dopant density for boron-doped, phosphorus-doped, and arsenic-doped silicon[S].
[11] GB/T 25076—2018, 太阳能电池用硅单晶[S].
GB/T 25076—2018, Monocrystalline silicon for solar cell[S].
[12] GB/T 11073—2007, 硅片径向电阻率变化的测量方法[S].
GB/T 11073—2007, Standard method for measuring radial resistivity variation on silicon slices[S].
[13] PORRINI M, SCALA R, VORONKOV V V.Behavior of volatile dopants (P, Sb) in Czochralski silicon growth[J]. Journal of crystal growth, 2017, 460: 13-15.
[14] SCHLESINGER M E.The thermodynamic properties of phosphorus and solid binary phosphides[J]. Chemical reviews, 2002, 102(11): 4267-4301.
PDF(1867 KB)

Accesses

Citation

Detail

Sections
Recommended

/