VARIABLE CONDITION ANALYSIS OF MAIN COMPRESSOR INLET OF RECOMPRESSION S-CO2 BRAYTON CYCLE BASED ON ONE-DIMENSIONAL PREDICTION MODEL

Liu Zhaoqiang, Li Chengyu

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (12) : 460-468.

PDF(1190 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1190 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (12) : 460-468. DOI: 10.19912/j.0254-0096.tynxb.2024-1365

VARIABLE CONDITION ANALYSIS OF MAIN COMPRESSOR INLET OF RECOMPRESSION S-CO2 BRAYTON CYCLE BASED ON ONE-DIMENSIONAL PREDICTION MODEL

  • Liu Zhaoqiang, Li Chengyu
Author information +
History +

Abstract

To address the performance deviation of simplified component models for S-CO2 Brayton cycles under off-design conditions, this study establishes an integrated system simulation program based on one-dimensional predictive models incorporating variable efficiency for rotating machinery components. The program investigates the influence patterns of key parameters on the thermodynamic performance of both components and the system under off-design operation. Furthermore, it analyzes the deviation in overall system performance between the one-dimensional predictive models and traditional simplified constant-efficiency models. The research findings demonstrate that an increase in the main compressor inlet temperature results in reduced CO2 density, consequently leading to increased power consumption by the main compressor. However, under the combined effects of system pressure losses and turbine efficiency, the turbine output power exhibits an opposing trend. System efficiency decreases with rising main compressor inlet temperature, with a more pronounced reduction observed under lower inlet pressure conditions. The maximum efficiency reduction of 11.6% occurs at a suction pressure of 7.68 MPa. Higher system thermal efficiency is achieved when the main compressor inlet parameters approach the pseudo-critical point. Comparative analysis reveals that the maximum discrepancy in system efficiency between the simplified model and the one-dimensional predictive model reaches 6.6%.

Key words

compressor / Brayton cycle / turbine / one-dimensional prediction model / S-CO2 / inlet parameters

Cite this article

Download Citations
Liu Zhaoqiang, Li Chengyu. VARIABLE CONDITION ANALYSIS OF MAIN COMPRESSOR INLET OF RECOMPRESSION S-CO2 BRAYTON CYCLE BASED ON ONE-DIMENSIONAL PREDICTION MODEL[J]. Acta Energiae Solaris Sinica. 2025, 46(12): 460-468 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1365

References

[1] 王刚, 董博祎, 姜铁骝, 等. S-CO2布雷顿循环太阳能电力淡水系统(㶲)分析[J]. 太阳能学报, 2022, 43(7): 197-202.
WANG G, DONG B Y, JIANG T L, et al.Exergy analysis of S-CO2 brayton cycle solar system for electricity and fresh water productions[J]. Acta energiae solaris sinica, 2022, 43(7): 197-202.
[2] 杨竞择, 杨震, 段远源. 不同装机容量下S-CO2塔式太阳能热发电系统的热力及经济性能分析[J]. 太阳能学报, 2022, 43(9): 125-130.
YANG J Z, YANG Z, DUAN Y Y.Thermodynamic and economic analysis of solar power tower system based on S-CO2 cycle with different installed capacity[J]. Acta energiae solaris sinica, 2022, 43(9): 125-130.
[3] FANG Z, DONG X, TANG X.Research on gas engine waste heat recovery system based on S-CO2[J]. Combustion science and technology, 2023, 29: 543-551.
[4] 杨熠辉, 余强, 王志峰, 等. sCO2太阳能热发电流化床固体颗粒/sCO2换热器建模与仿真研究[J]. 太阳能学报, 2022, 43(8): 195-203.
YANG Y H, YU Q, WANG Z F, et al.Modeling and simulation of fluidized bed solid particle/sCO2 heat exchanger of sCO2 solar thermal power plant[J]. Acta energiae solaris sinica, 2022, 43(8): 195-203.
[5] ZHOU A Z, LI X S, REN X D, et al.Thermodynamic and economic analysis of a supercritical carbon dioxide (S-CO2) recompression cycle with the radial-inflow turbine efficiency prediction[J]. Energy, 2020, 191: 116566.
[6] LOCK A, BONE V.Off-design operation of the dry-cooled supercritical CO2 power cycle[J]. Energy conversion and management, 2022, 251: 114903.
[7] DUNIAM S, VEERARAGAVAN A.Off-design performance of the supercritical carbon dioxide recompression Brayton cycle with NDDCT cooling for concentrating solar power[J]. Energy, 2019, 187: 115992.
[8] 马岳庚, 刘明, 严俊杰, 等. 用于高温太阳能光热发电的S-CO2循环优化研究[J]. 工程热物理学报, 2018, 39(8): 1649-1655.
MA Y G, LIU M, YAN J J, et al.Optimization of recompression supercritical brayton cycle for high temperature concentrated solar power application[J]. Journal of engineering thermophysics, 2018, 39(8): 1649-1655.
[9] 周奥铮, 李雪松, 任晓栋, 等. 基于向心透平效率预测的超临界二氧化碳循环的热力学分析[J]. 工程热物理学报, 2020, 41(12): 2891-2899.
ZHOU A Z, LI X S, REN X D, et al.Thermodynamic analysis of supercritical carbon dioxide brayton cycle based on the prediction of the radial inflow turbine efficiency[J]. Journal of engineering thermophysics, 2020, 41(12): 2891-2899.
[10] AMELI A, AFZALIFAR A, TURUNEN-SAARESTI T, et al.Centrifugal compressor design for near-critical point applications[J]. Journal of engineering for gas turbines and power, 2019, 141(3): 031016.
[11] SAEED M, KIM M H.Analysis of a recompression supercritical carbon dioxide power cycle with an integrated turbine design/optimization algorithm[J]. Energy, 2018, 165: 93-111.
[12] 张虎忠. 超临界CO2印刷电路板换热器性能研究[D]. 北京: 中国科学院大学(中国科学院工程热物理研究所), 2020.
ZHANG H Z.Study on the thermal-hydraulic performance of printed circuit heat exchanger with supercritical carbon dioxide[D]. Beijing: The Institute of Engineering Thermophysics(Chinese Academy of Sciences), 2020.
[13] MESHRAM A, JAISWAL A K, KHIVSARA S D, et al.Modeling and analysis of a printed circuit heat exchanger for supercritical CO2 power cycle applications[J]. Applied thermal engineering, 2016, 109: 861-870.
[14] PASCH J, CONBOY T, FLEMING D, et al.Supercritical CO2 recompression Brayton cycle: completed assembly description: SAND 2012-9546[R]. Albuquerque, NM: Sandia National Laboratorise, 2012.
PDF(1190 KB)

Accesses

Citation

Detail

Sections
Recommended

/