STUDY ON THE BEARING CHARACTERISTICS OF NOVEL PERFORATED GRAVITY ANCHORS FOR OFFSHORE FLOATING PHOTOVOLTAIC STATIONS

Liang Zhenyu, Liu Run, Sun Ruohan, Liu Mengmeng

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (12) : 788-796.

PDF(1570 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1570 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (12) : 788-796. DOI: 10.19912/j.0254-0096.tynxb.2024-1374

STUDY ON THE BEARING CHARACTERISTICS OF NOVEL PERFORATED GRAVITY ANCHORS FOR OFFSHORE FLOATING PHOTOVOLTAIC STATIONS

  • Liang Zhenyu1, Liu Run1,2, Sun Ruohan1, Liu Mengmeng1
Author information +
History +

Abstract

To enhance the anchoring capacity of gravity anchors, a novel perforated gravity anchor was proposed. Numerical analysis methods were employed to study the effects of foundation perforation rate (R), number of perforations (N), and perforation shape (S) on the anchoring capacity of gravity anchors in homogeneous saturated clay. An empirical formula was established to determine the anchoring capacity. The study found that with a fixed number of perforations N, both horizontal and uplift anchoring capacities of the foundation decrease with increasing porosity rate R. When the porosity rate R is constant, the horizontal and uplift anchoring capacity coefficients NcH and NcV significantly increase with the increase in N. Specifically, NcH growth rate slows and stabilizes when N≥16, while NcV grows slowly for 9<N<16 and remains constant when N≥16. The perforation shape has a minor effect on the anchoring capacity. The research results provide a theoretical basis for optimizing the anchoring foundation design of offshore floating photovoltaic systems, ensuring their stability and reliability in harsh marine environments.

Key words

photovoltaic power / anchor foundation / bearing capacity / floating photovoltaic / perforation rate / perforation shape

Cite this article

Download Citations
Liang Zhenyu, Liu Run, Sun Ruohan, Liu Mengmeng. STUDY ON THE BEARING CHARACTERISTICS OF NOVEL PERFORATED GRAVITY ANCHORS FOR OFFSHORE FLOATING PHOTOVOLTAIC STATIONS[J]. Acta Energiae Solaris Sinica. 2025, 46(12): 788-796 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1374

References

[1] 吴继亮, 梁甜, 糜文杰, 等. 水上漂浮式光伏电站的发展及应用前景分析[J]. 太阳能, 2019(12): 20-23.
WU J L, LIANG T, MI W J, et al.Development and application prospects analysis of floating PV power plants[J]. Solar energy, 2019(12): 20-23.
[2] 鲁文鹤, 练继建, 董霄峰, 等. 波浪作用对海上漂浮式光伏光照辐射能的影响[J]. 水力发电学报, 2023, 42(5): 35-42.
LU W H, LIAN J J, DONG X F, et al.Effect of sea waves on radiant energy of floating photovoltaic[J]. Journal of hydroelectric engineering, 2023, 42(5): 35-42.
[3] 肖福勤, 陈作钢, 代燚, 等. 漂浮式光伏电站方阵环境载荷计算方法研究[J]. 工程力学, 2020, 37(3): 245-256.
XIAO F Q, CHEN Z G, DAI Y, et al.Numerical method study on environmental loads of floating photovoltaic power array[J]. Engineering mechanics, 2020, 37(3): 245-256.
[4] POURAN H M, PADILHA CAMPOS LOPES M, NOGUEIRA T, et al. Environmental and technical impacts of floating photovoltaic plants as an emerging clean energy technology[J]. iScience, 2022, 25(11): 105253.
[5] ESMAEILI SHAYAN M, HOJATI J.Floating solar power plants: a way to improve environmental and operational flexibility[J]. Iranian journal of energy and environment, 2021, 12(4): 337-348.
[6] 郭军, 陈作钢, 肖福勤, 等. 光伏电站漂浮方阵波浪载荷数值分析研究[J]. 太阳能学报, 2021, 42(1): 1-6.
GUO J, CHEN Z G, XIAO F Q, et al.Numerical research on wave loads of floating photovoltalic power station[J]. Acta energiae solaris sinica, 2021, 42(1): 1-6.
[7] 黄勇, 赵子帅, 文锋. 海上漂浮式光伏关键技术的研究现状与发展趋势[J]. 科学技术与工程, 2025, 25(9): 3529-3544.
HUANG Y, ZHAO Z S, WEN F.Research status and development trends of key technologies for floating photovoltaic systems at sea[J]. Science technology and engineering, 2025, 25(9): 3529-3544.
[8] 施兴华, 孙哲, 张婧. 考虑连接件刚度影响的多浮体漂浮光伏方阵运动响应分析[J]. 太阳能学报, 2023, 44(8): 301-306.
SHI X H, SUN Z, ZHANG J.Kinematic response analysis of multi-body floating photovoltaic array considering stiffness of connecting parts[J]. Acta energiae solaris sinica, 2023, 44(8): 301-306.
[9] 姜淏予, 王沛伦, 葛泉波, 等. 漂浮式光伏网格对海上天气突变的感知方法[J]. 上海交通大学学报, 2022, 56(12): 1584-1597.
JIANG H Y, WANG P L, GE Q B, et al.A sensing method based of floating photovoltaic grids to sudden changes in marine weather[J]. Journal of Shanghai Jiao Tong University, 2022, 56(12): 1584-1597.
[10] 宋肖锋, 陈作钢, 肖福勤, 等. 漂浮式光伏电站方阵风载荷数值研究[J]. 太阳能学报, 2020, 41(10): 136-143.
SONG X F, CHEN Z G, XIAO F Q, et al.Numerical research on wind load of floating solar power plants[J]. Acta energiae solaris sinica, 2020, 41(10): 136-143.
[11] 刘润, 刘孟孟. 饱和黏土中复合条形防沉板基础承载特性研究[J]. 水利学报, 2015, 46(S1): 74-78.
LIU R, LIU M M.Bearing capacity of composite-strip mudmat foundations for subsea production system on undrained clays[J]. Journal of hydraulic engineering, 2015, 46(S1): 74-78.
[12] 刘润, 刘孟孟, 马文冠. 新型防沉板基础的地基承载力研究[J]. 岩土力学, 2016, 37(11): 3065-3071, 3136.
LIU R, LIU M M, MA W G.Bearing capacity of a new type of mudmat foundation[J]. Rock and soil mechanics, 2016, 37(11): 3065-3071, 3136.
[13] 刘孟孟. 水下生产系统防沉板基础多维受荷承载特性研究[D]. 天津: 天津大学, 2018.
LIU M M.Research on bearing capacity of mudmat foundation for underwater production system under multi-dimensional loading[D]. Tianjin: Tianjin University, 2018.
[14] TAPPER L, MARTIN C, BYRNE B, et al.Undrained vertical bearing capacity of perforated shallow foundations[M]. Boca Raton: CRC Press, 2015: 813-818.
[15] 刘润, 刘孟孟, 杨树耕. 饱和软黏土中不同形状深水防沉板基础承载特性研究[J]. 海洋学报, 2016, 38(3): 131-144.
LIU R, LIU M M, YANG S G.Bearing capacity of different shape mudmat foundations for subsea production system on undrained clays[J]. Haiyang xuebao, 2016, 38(3): 131-144.
[16] 张所辉, 吴姝娜, 金涛. 开孔方形防沉板在海底黏性土中的承载特性[J]. 计算机辅助工程, 2020, 29(1): 24-30, 46.
ZHANG S H, WU S N, JIN T.Bearing capacity of square perforated mudmat on seabed soft clay[J]. Computer aided engineering, 2020, 29(1): 24-30, 46.
[17] 王乐, 岳洋, 张春会, 等. 砂土上复合重力式基础承载力包络面及系泊点研究[J]. 天津大学学报(自然科学与工程技术版), 2023, 56(5): 535-541.
WANG L, YUE Y, ZHANG C H, et al.Study on bearing capacity envelope surface and mooring point of composite gravity foundation on sand[J]. Journal of Tianjin University (science and technology), 2023, 56(5): 535-541.
[18] 于洋. 深海软黏土中浅基础地基承载特性研究[D]. 天津: 天津大学, 2021.
YU Y.Research on the bearing characteristics of shallow foundation in deep-sea soft clay[D]. Tianjin: Tianjin University, 2021.
[19] FENG X, RANDOLPH M F, GOURVENEC S, et al.Design approach for rectangular mudmats under fully three-dimensional loading[J]. Géotechnique, 2014, 64(1): 51-63.
[20] BIENEN B, BYRNE B W, HOULSBY G T, et al.Investigating six-degree-of-freedom loading of shallow foundations on sand[J]. Géotechnique, 2006, 56(6): 367-379.
[21] WHITE D, CHEUK C, SPRINGMAN S, et al.An investigation into the vertical bearing capacity of perforated mudmats[M]. London: Taylor & Francis, 2005
[22] LI X J, GAUDIN C, TIAN Y H, et al.Effect of perforations on uplift capacity of skirted foundations on clay[J]. Canadian geotechnical journal, 2014, 51(3): 322-331.
[23] 刘润, 孔金鹏, 刘孟孟, 等. 饱和软黏土中开孔防沉板基础上拔特性研究[J]. 岩土工程学报, 2019, 41(8): 1427-1434.
LIU R, KONG J P, LIU M M, et al.Uplift behaviors of perforated mudmats in soft saturated clay[J]. Chinese journal of geotechnical engineering, 2019, 41(8): 1427-1434.
[24] (美)太沙基K著. 理论土力学[M]. 徐志英译. 北京: 地质出版社, 1960.
(US) TERZAGHI K. Theoretical soil mechanics[M]. (Translated by XU Z Y). Beijing: Geological Publishing House, 1960.
[25] SKEMPTON A W.The bearing capacity of clays[M]. London: Thomas Telford Publishing, 1984: 50-59.
[26] 长崎佐治, 尾形贤. 作用在海底管道上的波浪力(之一)(日)[C]//第18回海岸工学讲演会论文集, 1971.
SAKI N, KENJI O.Wave forces acting on submarine pipelines (one of them) (Japanese)[C]. Proceedings of the 18th Coastal Engineering Lecture, 1971.
[27] LIU R, ZHANG H Y, CHEN G S, et al.Study on vertical bearing capacity of solid and perforated mudmats in clay[J]. Ocean engineering, 2020, 198: 106973.
PDF(1570 KB)

Accesses

Citation

Detail

Sections
Recommended

/