NUMERICAL STUDY FOR EFFECTS OF CLAY NONLINEAR SMALL-STRAIN STIFFNESS ON CONE PENETRATION IN OFFSHORE WIND POWER

Zhang Zuguo, Zhu Junlin, Shen Kanmin

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (12) : 653-661.

PDF(1966 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1966 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (12) : 653-661. DOI: 10.19912/j.0254-0096.tynxb.2024-1375

NUMERICAL STUDY FOR EFFECTS OF CLAY NONLINEAR SMALL-STRAIN STIFFNESS ON CONE PENETRATION IN OFFSHORE WIND POWER

  • Zhang Zuguo, Zhu Junlin, Shen Kanmin
Author information +
History +

Abstract

The current interpretation methods for the cone penetration test (CPT), which is used to obtain in-situ parameters of clay in offshore wind power investigations, are based on the elastic-perfectly plastic soil model and do not adequately account for the small-strain nonlinear stiffness characteristics of clay. This paper conducts numerical studies to investigate the impact of clay stress-strain nonlinearity and small-strain parameters on cone tip resistance. Saturated clays are modeled using the hyperbolic hardening elastoplastic model and the small-strain elastoplastic constitutive model, simulating the cone penetration process within the ABAQUS finite element software framework. To mitigate mesh distortion during large deformation analyses, the Arbitrary Lagrangian Eulerian (ALE) remapping technique is adopted. Finite element numerical simulations indicate that soil stiffness, in-situ stress of soil strata, cone surface roughness, and failure criteria significantly influence the cone bearing factor. Moreover, an increased soil failure ratio corresponds to a decreased cone factor. Importantly, accounting for small-strain stiffness leads to a marked augmentation of the cone factor, with the extent of this increase being closely related to the interplay among small-strain stiffness, reference shear strain, and large-strain stiffness. Finally, the proposed method for evaluating the cone factor, which incorporates the small-strain stiffness of clay, is validated through a field engineering case, demonstrating robust applicability.

Key words

offshore wind farms / cone penetration test / soft clay / large deformation finite element / small-strain stiffness / cone factor

Cite this article

Download Citations
Zhang Zuguo, Zhu Junlin, Shen Kanmin. NUMERICAL STUDY FOR EFFECTS OF CLAY NONLINEAR SMALL-STRAIN STIFFNESS ON CONE PENETRATION IN OFFSHORE WIND POWER[J]. Acta Energiae Solaris Sinica. 2025, 46(12): 653-661 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1375

References

[1] 汪明元, 李娜, 程星磊, 等. 软黏土中张紧式吸力桶基础循环弱化过程分析[J]. 太阳能学报, 2023, 44(11): 341-349.
WANG M Y, LI N, CHENG X L, et al.Analysis of cyclic degradation process of tensioned suction bucket foundations in soft clays[J]. Acta energiae solaris sinica, 2023, 44(11): 341-349.
[2] 边汉亮, 边家涵, 段超龙, 等. 基于CPT/CPTU的桩基竖向承载力分析方法研究综述[J]. 河南大学学报(自然科学版), 2023, 53(5): 615-624.
BIAN H L, BIAN J H, DUAN C L, et al.Review on the analysis methods of vertical bearing capacity of pile foundation based on CPT/CPTU[J]. Journal of Henan University (natural science), 2023, 53(5): 615-624.
[3] 王宽君, 汪明元, 沈侃敏, 等. 基于球形静力触探的嘉兴海域软黏土强度特性研究[J]. 太阳能学报, 2024, 45(4): 134-142.
WANG K J, WANG M Y, SHEN K M, et al.Strength behaviour of soft clay in Jiaxing offshore area based on ball penetration test[J]. Acta energiae solaris sinica, 2024, 45(4): 134-142.
[4] 王宽君, 沈侃敏, 汪明元, 等. 黄海海域风电工程软弱海床强度CPTU原位解译方法[J]. 太阳能学报, 2023, 44(2): 99-108.
WANG K J, SHEN K M, WANG M Y, et al.CPTU interpretation method of weak seabed strength of offshore wind power project in Yellow Sea area[J]. Acta energiae solaris sinica, 2023, 44(2): 99-108.
[5] 王宽君, 沈侃敏, 汪明元, 等. 基于孔压静力触探的杭州湾海域软黏土强度解译参数研究[J]. 岩土力学, 2023, 44(S1): 521-532.
WANG K J, SHEN K M, WANG M Y, et al.Strength interpretation parameter of piezoncone penetration test for soft clay in offshore area of Hangzhou Bay[J]. Rock and soil mechanics, 2023, 44(S1): 521-532.
[6] 王宽君, 贾志远, 沈侃敏, 等. 台州滨海软黏土强度特性室内外联合标定[J]. 岩土力学, 2023, 44(10): 2851-2859.
WANG K J, JIA Z Y, SHEN K M, et al.Joint laboratory and in situ calibration of strength characteristics for Taizhou coastal soft clay[J]. Rock and soil mechanics, 2023, 44(10): 2851-2859.
[7] SHIN Y J, KIM D.Assessment of undrained shear strength based on cone penetration test (CPT) for clayey soils[J]. KSCE journal of civil engineering, 2011, 15(7): 1161-1166.
[8] YU H S, MITCHELL J K.Analysis of cone resistance: review of methods[J]. Journal of geotechnical and geoenvironmental engineering, 1998, 124(2): 140-149.
[9] CHAI J C, SHENG D C, CARTER J P, et al.Coefficient of consolidation from non-standard piezocone dissipation curves[J]. Computers and geotechnics, 2012, 41: 13-22.
[10] MOUG D M, BOULANGER R W, DEJONG J T, et al.Axisymmetric simulations of cone penetration in saturated clay[J]. Journal of geotechnical and geoenvironmental engineering, 2019, 145(4): 04019008.
[11] LIYANAPATHIRANA D S.Numerical simulation of deep penetration of a piezocone in a strain-softening clay[J]. International journal of geotechnical engineering, 2016, 10(2): 174-182.
[12] WEI L, ABU-FARSAKH M Y, TUMAY M T. Finite-element analysis of inclined piezocone penetration test in clays[J]. International journal of geomechanics, 2005, 5(3): 167-178.
[13] TOLOOIYAN A, GAVIN K.Modelling the cone penetration test in sand using cavity expansion and arbitrary Lagrangian eulerian finite element methods[J]. Computers and geotechnics, 2011, 38(4): 482-490.
[14] ZHU J L, YU J, HUANG M S, et al.Inclusion of small-strain stiffness in monotonic p-y curves for laterally loaded piles in clay[J]. Computers and geotechnics, 2022, 150: 104902.
[15] SHI Z H, HUANG M S.Intergranular-strain elastic model for recent stress history effects on clay[J]. Computers and geotechnics, 2020, 118: 103316.
[16] YU H S, HERRMANN L R, BOULANGER R W.Analysis of steady cone penetration in clay[J]. Journal of geotechnical and geoenvironmental engineering, 2000, 126(7): 594-605.
[17] LU Q, RANDOLPH M F, HU Y, et al.A numerical study of cone penetration in clay[J]. Géotechnique, 2004, 54(4): 257-267.
[18] LIYANAPATHIRANA D S.Arbitrary Lagrangian Eulerian based finite element analysis of cone penetration in soft clay[J]. Computers and geotechnics, 2009, 36(5): 851-860.
[19] TEH C I, HOULSBY G T.An analytical study of the cone penetration test in clay[J]. Géotechnique, 1991, 41(1): 17-34.
[20] 王长虹, 吴昭欣, 王昆, 等. CPTU数据校准上海深层软土参数的随机力学-贝叶斯方法[J]. 岩土工程学报, 2023, 45(1): 75-84.
WANG C H, WU Z X, WANG K, et al.Stochastic mechanics-based Bayesian method for calibrating geotechnical parameters of Shanghai deep soft clay using CPTU data[J]. Chinese journal of geotechnical engineering, 2023, 45(1): 75-84.
[21] 梁发云, 贾亚杰, 丁钰津, 等. 上海地区软土HSS模型参数的试验研究[J]. 岩土工程学报, 2017, 39(2): 269-278.
LIANG F Y, JIA Y J, DING Y J, et al.Experimental study on parameters of HSS model for soft soils in Shanghai[J]. Chinese journal of geotechnical engineering, 2017, 39(2): 269-278.
PDF(1966 KB)

Accesses

Citation

Detail

Sections
Recommended

/