INVESTIGATION ON INFLUENCE OF AEROELASTIC MODELS ON DYNAMIC RESPONSE OF SUPPORT STRUCTURE FOR 15 MW OFFSHORE WIND TURBINE

Yang Dinghua, Ma Lu, Ding Jieyi, Zhang Xianfeng, Wang Wubin, Yang Yang

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (12) : 644-652.

PDF(5466 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(5466 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (12) : 644-652. DOI: 10.19912/j.0254-0096.tynxb.2024-1378

INVESTIGATION ON INFLUENCE OF AEROELASTIC MODELS ON DYNAMIC RESPONSE OF SUPPORT STRUCTURE FOR 15 MW OFFSHORE WIND TURBINE

  • Yang Dinghua1, Ma Lu1, Ding Jieyi2, Zhang Xianfeng1, Wang Wubin1, Yang Yang2
Author information +
History +

Abstract

In order to quantitatively analyze the influence of various aeroelastic models on the response for wind turbine support structures, the IEA 15 MW wind turbine is taken as the researoh object in this paper. Four types of aeroelastic models are developed based on Blade Element-Momentum theory (BEM), Generalized Dynamic Wake (GDW), Geometrically Exact Beam theory (GEBT) and Model Superposition Method (MSM). The tower-top displacement and bending moments at the pile base are investigated and compared under typical operational and extreme parked conditions using the open-source software OpenFAST. The results show that the blade model based on GEBT results in a 34.89% reduction in tower-top displacement compared to that achieved by MSM under the wind speed of 11 m/s. The fluctuation of standard deviations of bending moments at the pile base based on GEBT is larger than that using MSM. The GEBT model is able to predict the dynamic response of the support structure more accurately in contrast with the MSM model, albeit requiring greater computational accuracy in time steps. Additionally, the discrepancies between structural models under the extreme sea conditions are notably significant. Specifically, the tower-top displacement and bending moments at the pile base of the GEBT model are more dramatic and severe than those of the MSM model under the wind speed of 50 m/s.

Key words

wind energy / offshore wind turbines / flexible blades / aeroelasticity / structural dynamics / geometrically exact beam theory

Cite this article

Download Citations
Yang Dinghua, Ma Lu, Ding Jieyi, Zhang Xianfeng, Wang Wubin, Yang Yang. INVESTIGATION ON INFLUENCE OF AEROELASTIC MODELS ON DYNAMIC RESPONSE OF SUPPORT STRUCTURE FOR 15 MW OFFSHORE WIND TURBINE[J]. Acta Energiae Solaris Sinica. 2025, 46(12): 644-652 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1378

References

[1] 柯世堂, 王同光, 曹九发, 等. 考虑叶片旋转和离心力效应风力机塔架风振分析[J]. 太阳能学报, 2015, 36(1): 33-40.
KE S T, WANG T G, CAO J F, et al.Wind-induced response analysis of wind turbine tower considering rotational and centrifugal force effect[J]. Acta energiae solaris sinica, 2015, 36(1): 33-40.
[2] 杨瑞, 岳雷东, 曾学仁, 等. 极端运行阵风下风电叶片动力学响应特性流固耦合分析[J]. 太阳能学报, 2024, 45(6): 503-509.
YANG R, YUE L D, ZENG X R, et al.Fluid structure interaction analysis of dynamic response characteristics of wind power blades under extreme operating gusts[J]. Acta energiae solaris sinica, 2024, 45(6): 503-509.
[3] 王泽栋, 王靛, 漆良文, 等. 考虑大变形的柔性风电叶片气弹性分析[J]. 太阳能学报, 2024, 45(2): 143-151.
WANG Z D, WANG D, QI L W, et al.Dynamic response of flexible wind turbine blades considering large-deflection[J]. Acta energiae solaris sinica, 2024, 45(2): 143-151.
[4] 尹凡夫, 陈嘉佳, 陈晓静, 等. 非均匀来流条件下风力机翼型结构非线性气弹稳定性研究[J]. 太阳能学报, 2023, 44(5): 442-448.
YIN F F, CHEN J J, CHEN X J, et al.Study on aeroelastic stability of wind turbine airfoil with structural nonlinearity in non-uniform inflow conditions[J]. Acta energiae solaris sinica, 2023, 44(5): 442-448.
[5] 何闯, 曹人靖. 三维效应对大型风力机叶片气动-结构特性影响的数值研究[J]. 太阳能学报, 2023, 44(10): 291-295.
HE C, CAO R J.Numerical study on aerodynamic-structure characteristics of large wind turbine blades considering three-dimensional effects[J]. Acta energiae solaris sinica, 2023, 44(10): 291-295.
[6] MENG H, LIEN F S, LI L.Elastic actuator line modelling for wake-induced fatigue analysis of horizontal axis wind turbine blade[J]. Renewable energy, 2018, 116: 423-437.
[7] MA Z, ZENG P, LEI L P.Analysis of the coupled aeroelastic wake behavior of wind turbine[J]. Journal of fluids and structures, 2019, 84: 466-484.
[8] 冷峻, 郜志腾, 郑小波, 等. 基于致动线方法的5 MW海上风力机气动弹性分析[J]. 空气动力学学报, 2022, 40(4): 203-209.
LENG J, GAO Z T, ZHENG X B, et al.Aeroelastic analysis of a 5 MW offshore wind turbine based on actuator line method[J]. Acta aerodynamica sinica, 2022, 40(4): 203-209.
[9] 钱晓航, 郜志腾, 王同光, 等. 百米级大柔性风电叶片非线性气弹响应分析[J]. 空气动力学学报, 2022, 40(4): 220-230.
QIAN X H, GAO Z T, WANG T G, et al.Nonlinear aeroelastic response analysis of 100-meter-scale flexible wind turbine blades[J]. Acta aerodynamica sinica, 2022, 40(4): 220-230.
[10] 张煜辰. 大型水平轴风力机刚柔耦合结构动力学分析[D]. 哈尔滨: 哈尔滨工程大学, 2023.
ZHANG Y C.Dynamic analysis of rigid-flexible coupling structure for large horizontal axis wind turbines[D]. Harbin: Harbin Engineering University, 2023.
[11] YANG Y, SHI Z B, FU J B, et al.Effects of tidal turbine number on the performance of a 10 MW-class semi-submersible integrated floating wind-current system[J]. Energy, 2023, 285: 128789.
PDF(5466 KB)

Accesses

Citation

Detail

Sections
Recommended

/