VALIDATION OF DUAL SCALE MODEL FOR CONCRETE WIND TURBINE TOWERS AND INVESTIGATION OF LOCAL PRESTRESS LOSS

Zhang Junjun, Zhen Li, Huang Hao, Lin Zheng, Liu Jinlong, Chen Gaixin

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (12) : 626-636.

PDF(1917 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1917 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (12) : 626-636. DOI: 10.19912/j.0254-0096.tynxb.2024-1386

VALIDATION OF DUAL SCALE MODEL FOR CONCRETE WIND TURBINE TOWERS AND INVESTIGATION OF LOCAL PRESTRESS LOSS

  • Zhang Junjun1,2, Zhen Li1,2, Huang Hao1,2, Lin Zheng1,2, Liu Jinlong1,2, Chen Gaixin1,2
Author information +
History +

Abstract

Compared to traditional steel towers, prestressed concrete wind turbine towers exhibit superior global and local stability, enabling their deployment in complex terrains and for greater hub heights. This study investigates the local and global mechanical properties, as well as the buckling stability, of a full-scale concrete tower under conditions of local symmetric prestress loss in the steel strands. Based on the scale reduction test and the dual scale modeling method. Results demonstrate excellent agreement between the dual scale model predictions and the scaled test data, with relative errors in load and displacement of 0.3% and 5.5%, respectively. For the full-scale model, local edge prestress loss exerts a more significant influence on structural displacement than the case without such loss. Specifically, prestress loss on the windward side results in a 12.2% increase in maximum displacement, while loss on the leeward side causes a 23.6% reduction. Regarding varying magnitudes of prestress loss, tensile stress changes remain minimal, whereas compressive stress changes are pronounced. Linear buckling modes remain largely consistent across different loading conditions, and the location of prestress loss has negligible impact on these modes. In contrast to linear buckling analysis, the critical load derived from non-linear buckling analysis is significantly reduced by 52.3%.

Key words

concrete wind tower / scaled test / dual scale model / prestress loss / buckling analysis

Cite this article

Download Citations
Zhang Junjun, Zhen Li, Huang Hao, Lin Zheng, Liu Jinlong, Chen Gaixin. VALIDATION OF DUAL SCALE MODEL FOR CONCRETE WIND TURBINE TOWERS AND INVESTIGATION OF LOCAL PRESTRESS LOSS[J]. Acta Energiae Solaris Sinica. 2025, 46(12): 626-636 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1386

References

[1] YUE Y C, TIAN J J, MU Q Y, et al.Feasibility of segmented concrete in wind turbine tower: numerical studies on its mechanical performance[J]. International journal of damage mechanics, 2021, 30(4): 518-536.
[2] DE LANA J A, ALMEIDA MAGALHÃES JÚNIOR P A, ALMEIDA MAGALHÃES C, et al. Behavior study of prestressed concrete wind-turbine tower in circular cross-section[J]. Engineering structures, 2021, 227: 111403.
[3] 陈俊岭, 高洁, 赵邦州, 等. 风电机组钢塔架与钢-混凝土组合塔架动力响应对比分析[J]. 太阳能学报, 2023, 44(3): 225-231.
CHEN J L, GAO J, ZHAO B Z, et al.Comprehensive analysis of dynamic response of steel and steel-concrete combined wind turbine towers[J]. Acta energiae solaris sinica, 2023, 44(3): 225-231.
[4] 杜静, 杨瑞伟, 李东坡, 等. MW级风电机组钢筋混凝土塔筒稳定性分析[J]. 太阳能学报, 2021, 42(3): 9-14.
DU J, YANG R W, LI D P, et al.Stability analysis of reinforced concrete tower of MW grade wind turbine[J]. Acta energiae solaris sinica, 2021, 42(3): 9-14.
[5] MA X W, ZENG S, DONG C H, et al.Design of assembled post-tensioned prestressed reactive powder concrete wind turbine tower[J]. Advanced materials research, 2014, 1055: 38-43.
[6] JIN Q X, LI V C.Development of lightweight engineered cementitious composite for durability enhancement of tall concrete wind towers[J]. Cement and concrete composites, 2019, 96: 87-94.
[7] MA H W, MENG R.Optimization design of prestressed concrete wind-turbine tower[J]. Science China technological sciences, 2014, 57(2): 414-422.
[8] 张曼生, 张国军, 黄威振, 等. 预应力装配式高耸风电塔架受力性能研究[J]. 建筑结构学报, 2022, 43(5): 62-78.
ZHANG M S, ZHANG G J, HUANG W Z, et al.Study on mechanical performance of pre-stressed assembled towering wind tower[J]. Journal of building structures, 2022, 43(5): 62-78.
[9] 闻洋, 王洪泽. 钢管混凝土格构式风电平面塔架的行为参数分析[J]. 建筑材料学报, 2020, 23(5): 1192-1199.
WEN Y, WANG H Z.Study on mechanical behavior of concrete-filled steel tubular lattice for wind power generation plane tower[J]. Journal of building materials, 2020, 23(5): 1192-1199.
[10] 闻洋, 蔡俊青, 付立平. 格构式钢管混凝土风电塔架球板式节点协同工作性能研究[J]. 太阳能学报, 2021, 42(3): 21-27.
WEN Y, CAI J Q, FU L P.Cooperative working performence of spherical plate joints of latticed concrete-filled steel tubular wind turbine tower[J]. Acta energiae solaris sinica, 2021, 42(3): 21-27.
[11] TOUSSAINT F, ROUCH H, DOBRUSKY S.Numerical Simulations and Non Destructive Measurements of fiber orientation on UHPFRC wind towers[C]//AFGC-ACI-fib-RILEM Int. Symposium on Ultra-High Performance Fibre-Reinforced Concrete. Montpellier, Fribce 2017, 1: 105-114.
[12] CAO Y Q, HE M J, MA R L, et al.Beam-column modeling and seismic fragility analysis of a prestressed segmental concrete tower for wind turbines[J]. Advances in structural engineering, 2020, 23(8): 1715-1727.
[13] CUSATIS G, REZAKHANI R, ALNAGGAR M, et al. Multiscale computational models for the simulation of concrete materials and structures[C]//Proceedings of the 7th International Conference on Computational Modelling of Concrete Structure(2014). St. Antonam Arlberg,Austria. Rotterdam: A.A. Balkema Pubushers, EURO-C2014: 23-38.
[14] WANG W D, ZHENG L, XIAN W.Simplified multi-scale simulation investigation of 3D composite floor substructures under different column-removal scenarios[J]. Journal of constructional steel research, 2023, 208: 108002.
[15] SADOWSKI A J.On the advantages of hybrid beam-shell structural finite element models for the efficient analysis of metal wind turbine support towers[J]. Finite elements in analysis and design, 2019, 162: 19-33.
[16] 梁睿. 风电机组混凝土塔筒受力机理及模型试验研究[D]. 郑州: 华北水利水电大学, 2019.
LIANG R.Study on mechanical mechanism and model test of concrete tower of wind turbine[D]. Zhengzhou: North China University of Water Resources and Electric Power, 2019.
[17] KENNA A, BASU B.A finite element model for pre-stressed or post-tensioned concrete wind turbine towers[J]. Wind energy, 2015, 18(9): 1593-1610.
[18] 张俊俊, 甄理, 黄昊, 等. 预应力混凝土风机塔架结构安全性影响因素研究[J]. 水电能源科学, 2024, 42(5): 206-210.
ZHANG J J, ZHEN L, HUANG H, et al.Research on safety influence of prestressed concrete wind turbine tower structure[J]. Water resources and power, 2024, 42(5): 206-210.
[19] LEE J, FENVES G L.Plastic-damage model for cyclic loading of concrete structures[J]. Journal of engineering mechanics, 1998, 124(8): 892-900.
[20] 杨旭. 高碾压混凝土重力坝地震响应分析与抗震性能评估研究[D]. 郑州: 郑州大学, 2021.
YANG X.Study on seismic response analysis and seismic performance evaluation of high RCC gravity dam[D]. Zhengzhou: Zhengzhou University, 2021.
[21] 曾宇, 胡良明. ABAQUS混凝土塑性损伤本构模型参数计算转换及校验[J]. 水电能源科学, 2019, 37(6): 106-109.
ZENG Y, HU L M.Calculation transformation and calibration of ABAQUS concrete plastic damage constitutive model[J]. Water resources and power, 2019, 37(6): 106-109.
[22] GB 50010—2002, 混凝土结构设计规范[S].
GB 50010—2002, Code for design of concrete structures[S].
PDF(1917 KB)

Accesses

Citation

Detail

Sections
Recommended

/