AERODYNAMIC PERFORMANCE STUDY OF TWO-STAGE CENTRIFUGAL AIR COMPRESSOR FOR FUEL CELLS UNDER TYPICAL WORKING CONDITIONS

Sun Xiuxiu, Zhang Zhongyuan, Wang Lin, Zhang Qian, Ma Teng, Meng Qi

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (12) : 101-107.

PDF(1666 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1666 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (12) : 101-107. DOI: 10.19912/j.0254-0096.tynxb.2024-1421

AERODYNAMIC PERFORMANCE STUDY OF TWO-STAGE CENTRIFUGAL AIR COMPRESSOR FOR FUEL CELLS UNDER TYPICAL WORKING CONDITIONS

  • Sun Xiuxiu1,2, Zhang Zhongyuan1,2, Wang Lin3, Zhang Qian1,2, Ma Teng1,2, Meng Qi1,2
Author information +
History +

Abstract

The aerodynamic performance of a two-stage air compressor under variable altitude is severely degraded and cannot meet the dynamic demands of high-power-density fuel cells. In order to broaden the working limit of the two-stage air compressor, numerical simulation was used to study the aerodynamic performance under typical working conditions. The results show that: with the decrease of inlet pressure, the pressure ratio of the two-stage air compressor decreases by 32.73%, and the isentropic efficiency decreases by 34.60%; with the increase of inlet temperature, the pressure ratio of the two-stage air compressor increases by 23.27%, and the isentropic efficiency decreases by 12.76%; with the increase of rotational speed, the pressure ratio of the two-stage compressor increases by 145%, and the isentropic efficiency increases first and then decreases, reaching a maximum value of 66.83% near the design speed.

Key words

centrifugal compressors / fuel cells / impellers / numerical simulation / aerodynamic performance / variable altitude

Cite this article

Download Citations
Sun Xiuxiu, Zhang Zhongyuan, Wang Lin, Zhang Qian, Ma Teng, Meng Qi. AERODYNAMIC PERFORMANCE STUDY OF TWO-STAGE CENTRIFUGAL AIR COMPRESSOR FOR FUEL CELLS UNDER TYPICAL WORKING CONDITIONS[J]. Acta Energiae Solaris Sinica. 2025, 46(12): 101-107 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1421

References

[1] 马涛, 孙佰清, 郭海凤, 等. 我国中长期经济发展中氢能消费量及CO2减排效果估算[J]. 太阳能学报, 2010, 31(11): 1521-1526.
MA T, SUN B Q, GUO H F, et al.Evaluation on hydrogen consumption and its reduction of CO2 emission of Chinese medium and long-term economic development[J]. Acta energiae solaris sinica, 2010, 31(11): 1521-1526.
[2] 陶丽蓉, 刘煜, 孔红兵, 等. 质子交换膜燃料电池整车辅助散热系统设计建模及分析[J]. 太阳能学报, 2023, 44(4): 299-305.
TAO L R, LIU Y, KONG H B, et al.Design, modeling and analysis of auxiliary heat dissipation system for proton exchange membrane fuel cell vehicle[J]. Acta energiae solaris sinica, 2023, 44(4): 299-305.
[3] 刘志祥, 李伦, 丁一, 等. 包含离心式空压机的大功率PEMFC空气系统喘振研究[J]. 太阳能学报, 2018, 39(1): 233-239.
LIU Z X, LI L, DING Y, et al.The surge research of heavy duty PEMFC air system with a centrifugal compressor[J]. Acta energiae solaris sinica, 2018, 39(1): 233-239.
[4] ZHANG H T, LI X G, LIU X Z, et al.Enhancing fuel cell durability for fuel cell plug-in hybrid electric vehicles through strategic power management[J]. Applied energy, 2019, 241: 483-490.
[5] 张众杰, 刘瑞林, 杨春浩, 等. 变海拔两级离心压气机特性试验研究[J]. 车用发动机, 2020(2): 42-48.
ZHANG Z J, LIU R L, YANG C H, et al.Experimental investigation on characteristics of two-stage centrifugal compressor at variable altitudes[J]. Vehicle engine, 2020(2): 42-48.
[6] LEWIS J, CLEMENTONI E, COX T, et al.Effect of compressor inlet temperature on cycle performance for a supercritical carbon dioxide brayton cycle[C]//The 6th International Supercritical CO2 Power Cycles Symposium, Pittsburgh, Pennsylvania, 2018.
[7] CLEMENTONI E M, COX T L.Effect of compressor inlet pressure on cycle performance for a supercritical carbon dioxide brayton cycle[C]//ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, 2018, Oslo, Norway, 2018.
[8] 吴刚, 张虹, 魏名山. 离心压气机高原特性数值计算与分析[J]. 车辆与动力技术, 2014(4): 1-5.
WU G, ZHANG H, WEI M S.Numerical calculation and analysis of the plateau characteristics of centrifugal compressor[J]. Vehicle & power technology, 2014(4): 1-5.
[9] 李书奇, 刘畅, 胡力峰, 等. 高原环境增压器离心压气机特性试验研究[J]. 机械工程学报, 2016, 52(20): 151-158.
LI S Q, LIU C, HU L F, et al.Experimental investigation on centrifugal compressor performance characteristics of plateau environment for vehicle turbocharger[J]. Journal of mechanical engineering, 2016, 52(20): 151-158.
[10] 朱大鑫. 涡轮增压与涡轮增压器[M]. 北京: 机械工业出版社, 1992.
ZHU D X.Turbocharging and turbochargers[M]. Beijing: China Machine Press, 1992.
[11] 祁大同. 离心式压缩机原理[M]. 北京: 机械工业出版社, 2018: 48-49.
QI D T.Principle of centrifugal compressors[M]. Beijing: China Machine Press, 2018: 48-49.
[12] 张虹, 吴刚, 魏名山, 等. 高原环境下离心式压气机通用特性研究[J]. 兵工学报, 2015, 36(11): 2032-2037.
ZHANG H, WU G, WEI M S, et al.Research on non-dimensional characteristics of centrifugal compressor under altitude environment[J]. Acta armamentarii, 2015, 36(11): 2032-2037.
[13] 吴云飞. 车载燃料电池离心式空压机高效区范围扩展优化研究[D]. 长沙: 湖南大学, 2021.
WU Y F.Study on expansion optimization of high efficiency zone of vehicle-borne fuel cell centrifugal air compressor[D]. Changsha: Hunan University, 2021.
[14] TONG Z T, YANG X M, SHANG P X, et al.Effect of inlet condition on the performance curve of a 10 MW supercritical carbon dioxide centrifugal compressor[J]. Machines, 2022, 10(5): 359.
PDF(1666 KB)

Accesses

Citation

Detail

Sections
Recommended

/