DUST DEPOSITION LOSS PREDICTION OF PHOTOVOLTAIC MODULES BASED ON SIMILAR DAY CLUSTERING AND SSA-LSTM

Li Xinfu, Li Bin, Wang Guangyi, Wu Zhengren, Zhang Jian, Wang Xin

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (12) : 195-203.

PDF(1836 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1836 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (12) : 195-203. DOI: 10.19912/j.0254-0096.tynxb.2024-1425

DUST DEPOSITION LOSS PREDICTION OF PHOTOVOLTAIC MODULES BASED ON SIMILAR DAY CLUSTERING AND SSA-LSTM

  • Li Xinfu, Li Bin, Wang Guangyi, Wu Zhengren, Zhang Jian, Wang Xin
Author information +
History +

Abstract

In order to explore the influence of meteorological factors on the dust deposition loss of photovoltaic modules, a prediction model combining similar day clustering, sparrow search algorithm (SSA) and long short-term memory(LSTM) is proposed. Firstly, the main meteorological factors are selected by the Pearson coefficient method. Secondly, the historical data is clustered into three similar day sample sets of sunny, cloudy and rainy days by using the K-means algorithm and prediction models are established respectively. Finally, the LSTM hyperparameters are optimized by SSA. The results show that compared with other models, the SSA-LSTM model has the best prediction effect. And the, a model combination prediction method is proposed. The results show that this method has the characteristics of high prediction accuracy and strong generalization ability, which can provide a reference for the prediction of photovoltaic module dust deposition loss.

Key words

K-means clustering / long short-term memory / forecasting / dust deposition loss / sparrow search algorithm / meteorology

Cite this article

Download Citations
Li Xinfu, Li Bin, Wang Guangyi, Wu Zhengren, Zhang Jian, Wang Xin. DUST DEPOSITION LOSS PREDICTION OF PHOTOVOLTAIC MODULES BASED ON SIMILAR DAY CLUSTERING AND SSA-LSTM[J]. Acta Energiae Solaris Sinica. 2025, 46(12): 195-203 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1425

References

[1] 国家能源局. 2024年可再生能源并网运行情况[EB/OL]. https://www.nea.gov.cn/20250221/e10f363cabe3458aaf78ba4558970054/c.html.
National Energy Administration. Grid-connected operation of renewable energy in2024[EB/OL]. https://www.nea.gov.cn/20250221/e10f363cabe3458aaf78ba4558970054/c.html.
[2] XU L Y, LI S Y, JIANG J M, et al.The influence of dust deposition on the temperature of soiling photovoltaic glass under lighting and windy conditions[J]. Solar energy, 2020, 199: 491-496.
[3] 王道累, 姚从荣, 李超, 等. 光伏组件热斑效应智能化检测的综述及展望[J]. 太阳能学报, 2024, 45(5): 527-536.
WANG D L, YAO C R, LI C, et al.Overview and prospect of intelligent detection of hot spot effect of photovoltaic modules[J]. Acta energiae solaris sinica, 2024, 45(5): 527-536.
[4] 张军涛, 朱少康, 王珊, 等. 基于有效介质理论的积灰组件透射特性研究[J]. 太阳能学报, 2022, 43(10): 52-58.
ZHANG J T, ZHU S K, WANG S, et al.Research on transmission characteristics of accumulated dust on surface of PV modules based on effective medium theory[J]. Acta energiae solaris sinica, 2022, 43(10): 52-58.
[5] VILLEMIN T, FARGES O, PARENT G, et al.Monte Carlo prediction of the energy performance of a photovoltaic panel using detailed meteorological input data[J]. International journal of thermal sciences, 2024, 195: 108672.
[6] ABDALLAH M, KHAIYAT A, BASAHEEH A, et al.Soiling loss rate measurements of photovoltaic modules in a hot and humid desert environment[J]. Journal of solar energy engineering, 2021, 143(3): 031005.
[7] SAID S A M, WALWIL H M. Fundamental studies on dust fouling effects on PV module performance[J]. Solar energy, 2014, 107: 328-337.
[8] 李练兵, 王增喜, 刘斌, 等. 太阳电池积灰对其发电性能影响的研究[J]. 太阳能学报, 2016, 37(6): 1418-1422.
LI L B, WANG Z X, LIU B, et al.Influence study of dust on power generation performance of PV module[J]. Acta energiae solaris sinica, 2016, 37(6): 1418-1422.
[9] 宁会峰, 程荣展, 王伟志, 等. 积灰对光伏发电的影响及除尘效果实验研究[J]. 太阳能学报, 2020, 41(11): 120-125.
NING H F, CHENG R Z, WANG W Z, et al.Experimental study on influence of dust accumulation on photovoltaic power generation and dust removal effect[J]. Acta energiae solaris sinica, 2020, 41(11): 120-125.
[10] QAISIEH A, ABU-NABAH B A, HAMDAN M O, et al. Optical characterization of accumulated dust particles and the sustainability of transmitted solar irradiance to photovoltaic cells[J]. Renewable energy, 2023, 219: 119439.
[11] KALDELLIS J K, FRAGOS P.Ash deposition impact on the energy performance of photovoltaic generators[J]. Journal of cleaner production, 2011, 19(4): 311-317.
[12] 黄牧涛, 邢芳菲, 陈兴邦, 等. 基于K-means聚类和极限学习机组合算法的短期光伏功率预测[J]. 水电能源科学, 2024, 42(2): 217-220, 216.
HUANG M T, XING F F, CHEN X B, et al.Short-term PV power prediction based on K-means clustering and extreme learning machine combination algorithm[J]. Water resources and power, 2024, 42(2): 217-220, 216.
[13] 王粟, 江鑫, 曾亮, 等. 基于VMD-DESN-MSGP模型的超短期光伏功率预测[J]. 电网技术, 2020, 44(3): 917-925.
WANG S, JIANG X, ZENG L, et al.Ultra-short-term photovoltaic power prediction based on VMD-DESN-MSGP model[J]. Power system technology, 2020, 44(3): 917-925.
[14] JAVED W, GUO B, FIGGIS B.Modeling of photovoltaic soiling loss as a function of environmental variables[J]. Solar energy, 2017, 157: 397-407.
[15] 陈金鑫, 潘国兵, 欧阳静, 等. 自然降雨下光伏组件积灰预测方法研究[J]. 太阳能学报, 2021, 42(2): 431-437.
CHEN J X, PAN G B, OUYANG J, et al.Study on prediction algorithm of dustfall on PV modules under natural rainfall[J]. Acta energiae solaris sinica, 2021, 42(2): 431-437.
[16] ZITOUNI H, AZOUZOUTE A, HAJJAJ C, et al.Experimental investigation and modeling of photovoltaic soiling loss as a function of environmental variables: a case study of semi-arid climate[J]. Solar energy materials and solar cells, 2021, 221: 110874.
[17] XUE J K, SHEN B.A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems science & control engineering, 2020, 8(1): 22-34.
[18] 王福忠, 王帅峰, 张丽. 基于VMD-LSTM与误差补偿的光伏发电超短期功率预测[J]. 太阳能学报, 2022, 43(8): 96-103.
WANG F Z, WANG S F, ZHANG L.Ultra short term power prediction of photovoltaic power generation based on VMD-LSTM and error compensation[J]. Acta energiae solaris sinica, 2022, 43(8): 96-103.
[19] 管筝, 印涌强, 张晓祥, 等. 基于K-means聚类与集成学习算法的小流域山洪灾害易发性评估[J]. 应用科学学报, 2024, 42(3): 388-404.
GUAN Z, YIN Y Q, ZHANG X X, et al.Estimating flash flood disaster susceptibility based on K-means clustering and ensemble learning approaches[J]. Journal of applied sciences, 2024, 42(3): 388-404.
PDF(1836 KB)

Accesses

Citation

Detail

Sections
Recommended

/