ROLLING OPTIMIZATION STRATEGY OF HYBRID ELECTROLYZERS ARRAY BASED ON ADAPTIVE STATE SWITCHING

Hu Yafeng, Zhao Xi, Yang Wenlong, Zhu Wenchao, Xie Changjun

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (6) : 99-109.

PDF(3218 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(3218 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (6) : 99-109. DOI: 10.19912/j.0254-0096.tynxb.2024-1429
Special Topics of Academic Papers at the 27th Annual Meeting of the China Association for Science and Technology

ROLLING OPTIMIZATION STRATEGY OF HYBRID ELECTROLYZERS ARRAY BASED ON ADAPTIVE STATE SWITCHING

  • Hu Yafeng1, Zhao Xi1, Yang Wenlong2, Zhu Wenchao3, Xie Changjun1
Author information +
History +

Abstract

To enhance the compatibility between hydrogen production systems and wind power, a rolling optimization strategy for a hybrid electrolyzers array, based on adaptive state switching, is proposed to address the power distribution challenges in hybrid hydrogen production systems comprising alkaline electrolyzers and proton exchange membrane electrolyzers. The performance of the hybrid system is compared to that of a single electrolyzers system under a basic start-stop strategy and a conventional rolling optimization approach. The results indicate that the efficiency of the hybrid system improved by 2.81 and 5.92 percentage point, respectively. Furthermore, three distinct strategies are applied to the hybrid hydrogen production system for comparative analysis. The findings reveal that the newly proposed hybrid electrolyzers array rolling optimization strategy, based on adaptive state switching, achieves a more balanced load distribution among electrolyzers, leading to a 4.57 percentage point increase in system efficiency compared to the simple start-stop strategy. Additionally, daily hydrogen production increases by 0.354 tons (16.40%). The average electrolyzer utilization rate is improved by 18.82 percentage point, while wind energy utilization rate is increased by 13.71 percentage point.

Key words

wind power / hydrogen production / electrolytic cells / power distribution / hybrid hydrogen production system / adaptive state switching / rolling optimization

Cite this article

Download Citations
Hu Yafeng, Zhao Xi, Yang Wenlong, Zhu Wenchao, Xie Changjun. ROLLING OPTIMIZATION STRATEGY OF HYBRID ELECTROLYZERS ARRAY BASED ON ADAPTIVE STATE SWITCHING[J]. Acta Energiae Solaris Sinica. 2025, 46(6): 99-109 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1429

References

[1] 周玮, 彭昱, 孙辉, 等. 含风电场的电力系统动态经济调度[J]. 中国电机工程学报, 2009, 29(25): 13-18.
ZHOU W, PENG Y, SUN H, et al.Dynamic economic dispatch in wind power integrated system[J]. Proceedings of the CSEE, 2009, 29(25): 13-18.
[2] 赵靖英, 门孝伟, 姚帅亮. 基于风电机组聚类的风电场有功分层分配策略[J]. 太阳能学报, 2023, 44(12): 306-315.
ZHAO J Y, MEN X W, YAO S L.Hierarchical active power distribution strategy of wind farms based on wind turbines clustering[J]. Acta energiae solaris sinica, 2023, 44(12): 306-315.
[3] ZHENG Y, HUANG C J, TAN J, et al.Off-grid wind/hydrogen systems with multi-electrolyzers: optimized operational strategies[J]. Energy conversion and management, 2023, 295: 117622.
[4] 林涛, 赵丹阳, 严寒. 风电消纳下多型号制氢机组阵列优化调度研究[J]. 太阳能学报, 2022, 43(11): 466-473.
LIN T, ZHAO D Y, YAN H.Research on optimal scheduling of multi-model hydrogen generator array under wind power consumption[J]. Acta energiae solaris sinica, 2022, 43(11): 466-473.
[5] 卢捷, 于立军, 郑培, 等. 风氢耦合系统超前控制策略研究[J]. 太阳能学报, 2022, 43(3): 53-60.
LU J, YU L J, ZHENG P, et al.Research on advanced control strategy of wind hydrogen coupling system[J]. Acta energiae solaris sinica, 2022, 43(3): 53-60.
[6] 胡可崴, 李浩, 王创, 等. 电解水制氢的多物理场建模与监控技术综述[J]. 电力自动化设备, 2023, 43(12): 3-13.
HU K W, LI H, WANG C, et al.Review on multiphysics modeling and regulation of power-to-hydrogen electrolyzer[J]. Electric power automation equipment, 2023, 43(12): 3-13.
[7] KHALIGH V, GHEZELBASH A, ZAREI M, et al.Efficient integration of alkaline water electrolyzer: a model predictive control approach for a sustainable low-carbon district heating system[J]. Energy conversion and management, 2023, 292: 117404.
[8] FANG R M, LIANG Y.Control strategy of electrolyzer in a wind-hydrogen system considering the constraints of switching times[J]. International journal of hydrogen energy, 2019, 44(46): 25104-25111.
[9] CHENG H R, XIA Y H, WEI W, et al.Safety and efficiency problems of hydrogen production from alkaline water electrolyzers driven by renewable energy sources[J]. International journal of hydrogen energy, 2024, 54: 700-712.
[10] FALCÃO D S, PINTO A M F R. A review on PEM electrolyzer modelling: guidelines for beginners[J]. Journal of cleaner production, 2020, 261: 121184.
[11] HERNÁNDEZ-GÓMEZ Á, RAMIREZ V, GUILBERT D. Investigation of PEM electrolyzer modeling: electrical domain, efficiency, and specific energy consumption[J]. International journal of hydrogen energy, 2020, 45(29): 14625-14639.
[12] LU X Y, DU B H, ZHOU S P, et al.Optimization of power allocation for wind-hydrogen system multi-stack PEM water electrolyzer considering degradation conditions[J]. International journal of hydrogen energy, 2023, 48(15): 5850-5872.
[13] 闫旭鹏, 卢启辰, 任志博, 等. 水电解制氢用商业化阴离子交换膜发展现状[J]. 储能科学与技术, 2023, 12(9): 2811-2822.
YAN X P, LU Q C, REN Z B, et al.Progress in developing commercial anion exchange membranes for hydrogen production by water electrolysis[J]. Energy storage science and technology, 2023, 12(9): 2811-2822.
[14] 张文强, 于波. 高温固体氧化物电解制氢技术发展现状与展望[J]. 电化学, 2020, 26(2): 212-229.
ZHANG W Q, YU B.Development status and prospects of hydrogen production by high temperature solid oxide electrolysis[J]. Journal of electrochemistry, 2020, 26(2): 212-229.
[15] LIU X Y, ZOU J, LONG R, et al.Variable period sequence control strategy for an off-grid photovoltaic-PEM electrolyzer hydrogen generation system[J]. Renewable energy, 2023, 216: 119074.
[16] HONG Z P, WEI Z X, HAN X J.Optimization scheduling control strategy of wind-hydrogen system considering hydrogen production efficiency[J]. Journal of energy storage, 2022, 47: 103609.
[17] 蔡国伟, 陈冲, 孔令国, 等. 风电/制氢/燃料电池/超级电容器混合系统控制策略[J]. 电工技术学报, 2017, 32(17): 84-94.
CAI G W, CHEN C, KONG L G, et al.Control of hybrid system of wind/hydrogen/fuel cell/supercapacitor[J]. Transactions of China Electrotechnical Society, 2017, 32(17): 84-94.
[18] SHIVA KUMAR S, HIMABINDU V.Hydrogen production by PEM water electrolysis: a review[J]. Materials science for energy technologies, 2019, 2(3): 442-454.
[19] IBÁÑEZ-RIOJA A, JÄRVINEN L, PURANEN P, et al. Off-grid solar PV-wind power-battery-water electrolyzer plant: simultaneous optimization of component capacities and system control[J]. Applied energy, 2023, 345: 121277.
[20] 李军舟, 赵晋斌, 曾志伟, 等. 具有动态调节特性的光伏制氢双阵列直接耦合系统优化策略[J]. 电网技术, 2022, 46(5): 1712-1721.
LI J Z, ZHAO J B, ZENG Z W, et al.Optimization strategy of photovoltaic hydrogen production dual array direct coupling system with dynamic regulation characteristics[J]. Power system technology, 2022, 46(5): 1712-1721.
[21] ABDIN Z, WEBB C J, GRAY E M.Modelling and simulation of a proton exchange membrane(PEM) electrolyser cell[J]. International journal of hydrogen energy, 2015, 40(39): 13243-13257.
[22] MAJUMDAR A, HAAS M, ELLIOT I, et al.Control and control-oriented modeling of PEM water electrolyzers: a review[J]. International journal of hydrogen energy, 2023, 48(79): 30621-30641.
[23] YODWONG B, GUILBERT D, PHATTANASAK M, et al.Faraday's efficiency modeling of a proton exchange membrane electrolyzer based on experimental data[J]. Energies, 2020, 13(18): 4792.
[24] SÁNCHEZ M, AMORES E, RODRÍGUEZ L, et al. Semi-empirical model and experimental validation for the performance evaluation of a 15 kW alkaline water electrolyzer[J]. International journal of hydrogen energy, 2018, 43(45): 20332-20345.
[25] 程浩然, 夏杨红, 何杭航, 等. 适用于可再生能源制氢的大容量碱液电解槽建模研究[J]. 太阳能学报, 2024, 45(2): 291-299.
CHENG H R, XIA Y H, HE H H, et al.Modeling of large-capacity alkaline electrolyzers for hydrogen production from renewable energy[J]. Acta energiae solaris sinica, 2024, 45(2): 291-299.
[26] ULLEBERG Ø.Modeling of advanced alkaline electrolyzers: a system simulation approach[J]. International journal of hydrogen energy, 2003, 28(1): 21-33.
[27] LI Y Y, DENG X T, ZHANG T, et al.Exploration of the configuration and operation rule of the multi-electrolyzers hybrid system of large-scale alkaline water hydrogen production system[J]. Applied energy, 2023, 331: 120413.
[28] 李建林, 梁忠豪, 赵文鼎, 等. 混合电解槽制氢系统选型及评估方法[J]. 高电压技术, 2024, 50(6): 2653-2662.
LI J L, LIANG Z H, ZHAO W D, et al.Selection and evaluation method of hydrogen production system in hybrid electrolytic cell[J]. High voltage engineering, 2024, 50(6): 2653-2662.
PDF(3218 KB)

Accesses

Citation

Detail

Sections
Recommended

/