EQUIVALENT MODEL RESEARCH OF PHOTOVOLTAIC POWER STATION BASED ON AP CLUSTERING ALGORITHM

Jin Beiyu, Xing Jie, Shan Yinghao, Hou Meiqian, Wan Jinwei

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (12) : 186-194.

PDF(4916 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(4916 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (12) : 186-194. DOI: 10.19912/j.0254-0096.tynxb.2024-1431

EQUIVALENT MODEL RESEARCH OF PHOTOVOLTAIC POWER STATION BASED ON AP CLUSTERING ALGORITHM

  • Jin Beiyu1, Xing Jie1, Shan Yinghao1, Hou Meiqian2, Wan Jinwei1
Author information +
History +

Abstract

Aiming at the equivalent modeling of concentrated PV power station and the traditional clustering algorithm's over-reliance on the initial clustering centers and the number of clusters, this paper proposes a clustering method for PV power station based on the affinity propagation (AP) algorithm, taking PV arrays with different solar irradiance as the object of study. The AP algorithm adopts the existing data points as the final clustering center, without specifying the initial clustering center and the number of clusters. Considering that the clustering index of PV power units needs to reflect the power output characteristics of PV power units, for this reason, the solar irradiance and the equivalent line impedance are taken as clustering indexes, and then the clustering algorithm is used to cluster the PV power units with different the solar irradiance and the equivalent line impedance into different categories, and the PV power units with similar categories are aggregated. At the same time, equate the parameters of the line impedance and inverters of the PV power station to establish a multi-machine equivalent model. Based on the PSCAD simulation platform, the clustering model of a typical 10 kV centralized PV power station is constructed by using the method of this paper, and the simulation results of the detail model, the AP clustering model, the C-FCM clustering model and the single-machine equivalent model are compared, which verifies the effectiveness of the clustering method of this paper under different solar irradiance of PV arrays.

Key words

solar energy / photoelectric devices / fuzzy clustering / equivalent modeling / PV power station / model validation / dynamic response

Cite this article

Download Citations
Jin Beiyu, Xing Jie, Shan Yinghao, Hou Meiqian, Wan Jinwei. EQUIVALENT MODEL RESEARCH OF PHOTOVOLTAIC POWER STATION BASED ON AP CLUSTERING ALGORITHM[J]. Acta Energiae Solaris Sinica. 2025, 46(12): 186-194 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1431

References

[1] 邹才能, 李士祥, 熊波, 等. 新质生产力下“能源绿色转型”革命及意义: 兼论“能源三角”理论认识[J]. 石油勘探与开发, 2024, 51(6): 1395-1408.
ZOU C N, LI S X, XIONG B, et al.Revolution and significance of “Green Energy Transition” in the context of new quality productive forces: a discussion on theoretical understanding of “Energy Triangle”[J]. Petroleum exploration and development, 2024, 51(6): 1395-1408.
[2] HAN P P, LIN Z H, ZHANG J J, et al.Equivalent modeling of photovoltaic power plant based on factor analysis and correlation clustering[J]. IEEE access, 2019, 7: 56935-56946.
[3] 陈霆威, 曾君, 张轩, 等. 面向规模化分布式可再生能源并网的群网协同互动优化方法[J]. 电力系统自动化, 2024, 48(15): 73-83.
CHEN T W, ZENG J, ZHANG X, et al.Cluster-grid cooperative interaction optimization method for large-scale distributed renewable energy integration[J]. Automation of electric power systems, 2024, 48(15): 73-83.
[4] 张永新, 李飞, 张榴晨, 等. 基于线路阻抗聚类的分布式光伏电站等效建模[J]. 太阳能学报, 2022, 43(5): 312-318.
ZHANG Y X, LI F, ZHANG L C, et al.Equivalent modeling of distributed photovoltaic power stations based on line impedance clustering[J]. Acta energiae solaris sinica, 2022, 43(5): 312-318.
[5] 张小科, 王子杰, 夏大伟, 等. 一种面向深度调峰运行火电机组的一次调频能力建模新方法[J]. 电网技术, 2022, 46(12): 4947-4954.
ZHANG X K, WANG Z J, XIA D W, et al.New modeling for primary frequency regulation capability of thermal power units under deep peak regulation[J]. Power system technology, 2022, 46(12): 4947-4954.
[6] LI P X, GU W, LONG H, et al.High-precision dynamic modeling of two-staged photovoltaic power station clusters[J]. IEEE transactions on power systems, 2019, 34(6): 4393-4407.
[7] 刘可真, 陈雪鸥, 陈镭丹, 等. 光伏发电系统动态离散等值模型研究[J]. 上海交通大学学报, 2023, 57(4): 412-421, 505.
LIU K Z, CHEN X O, CHEN L D, et al.Dynamic discrete equivalent model of photovoltaic power generation system[J]. Journal of Shanghai Jiao Tong University, 2023, 57(4): 412-421, 505.
[8] 韩平平, 林子豪, 夏雨, 等. 大型光伏电站等值建模综述[J]. 电力系统及其自动化学报, 2019, 31(4): 39-47.
HAN P P, LIN Z H, XIA Y, et al.Review on equivalent modeling of large-scale photovoltaic power plant[J]. Proceedings of the CSU-EPSA, 2019, 31(4): 39-47.
[9] 连乾钧, 石磊, 康钦一, 等. 实用环境下光伏组件发电效率评价方法研究[J]. 太阳能学报, 2018, 39(6): 1595-1599.
LIAN Q J, SHI L, KANG Q Y, et al.Research of evaluation method of PV module efficiency in practical environment[J]. Acta energiae solaris sinica, 2018, 39(6): 1595-1599.
[10] 殷豪, 陈云龙, 孟安波, 等. 基于二次自适应支持向量机的光伏输出功率预测[J]. 太阳能学报, 2019, 40(7): 1866-1873.
YIN H, CHEN Y L, MENG A B, et al.Forecasting photovoltaic power based on quadric self-adaptive SVM model[J]. Acta energiae solaris sinica, 2019, 40(7): 1866-1873.
[11] 蔡昌春, 息梦蕊, 刘昊林, 等. 基于数据驱动和多场景技术的微电网并网等效建模[J]. 电力自动化设备, 2022, 42(9): 64-69.
CAI C C, XI M R, LIU H L, et al.Grid-connected equivalent modeling of microgrids based on data-driven and multi-scenario technologies[J]. Electric power automation equipment, 2022, 42(9): 64-69.
[12] 孙丽敬, 盛万兴, 吴鸣, 等. 基于模糊C均值聚类的分布式电源集群并网逆变器输出功率置信区间估计方法[J]. 电网技术, 2019, 43(5): 1495-1503.
SUN L J, SHENG W X, WU M, et al.Estimation method of DG clusters grid-connected inverter’s output power confidence interval based on fuzzy C-means algorithm[J]. Power system technology, 2019, 43(5): 1495-1503.
[13] 黄鹤, 李文龙, 杨澜, 等. 跳跃跟踪SSA交叉迭代AP聚类算法[J]. 电子学报, 2024, 52(3): 977-990.
HUANG H, LI W L, YANG L, et al.Jump tracking SSA hybrid iterative AP clustering algorithm[J]. Acta electronica sinica, 2024, 52(3): 977-990.
[14] 郭易鑫, 韩霞, 倪光捷, 等. 基于改进Canopy-FCM的光伏电站动态特性聚类算法[J]. 计算机应用与软件, 2022, 39(4): 287-293, 331.
GUO Y X, HAN X, NI G J, et al.A clustering analysis algorithm of dynamic characteristics of photovoltaic power plant based on improved Canopy fuzzy C-means[J]. Computer applications and software, 2022, 39(4): 287-293, 331.
[15] 盛万兴, 季宇, 吴鸣, 等. 基于改进模糊C均值聚类算法的区域集中式光伏发电系统动态分群建模[J]. 电网技术, 2017, 41(10): 3284-3291.
SHENG W X, JI Y, WU M, et al.Dynamic clustering modeling of regional centralized photovoltaic power plant based on improved fuzzy C-means clustering algorithm[J]. Power system technology, 2017, 41(10): 3284-3291.
[16] 韩雨, 郭成, 方正云, 等. 基于AP-WOA-GRU的分布式光伏集群电压越限动态预测[J]. 电网与清洁能源, 2024, 40(4): 118-126.
HAN Y, GUO C, FANG Z Y, et al.The dynamic prediction of voltage overrun of the distributed photovoltaic cluster based on AP-WOA-GRU[J]. Power system and clean energy, 2024, 40(4): 118-126.
[17] 林文婷, 李培强, 荆志宇, 等. 基于多级特征提取的BiLSTM短期光伏出力预测[J]. 太阳能学报, 2024, 45(10): 284-297.
LIN W T, LI P Q, JING Z Y, et al.Short-term photovoltaic output prediction based on multi-level feature extraction using BiLSTM[J]. Acta energiae solaris sinica, 2024, 45(10): 284-297.
[18] 李健, 贺国伟, 孙光友, 等. 考虑低穿特征的规模化光伏聚类分析方法[J]. 电力系统及其自动化学报, 2023, 35(8): 1-8.
LI J, HE G W, SUN G Y, et al.Clustering analysis method for large-scale photovoltaic with LVRT characteristics[J]. Proceedings of the CSU-EPSA, 2023, 35(8): 1-8.
[19] 潘学萍, 张源, 鞠平, 等. 太阳能光伏电站等效建模[J]. 电网技术, 2015, 39(5): 1173-1178.
PAN X P, ZHANG Y, JU P, et al.Equivalent modeling for photovoltaic power station[J]. Power system technology, 2015, 39(5): 1173-1178.
[20] 党倩, 崔阿军, 尚闻博, 等. 采用欧式形态距离的负荷曲线近邻传播聚类方法[J]. 西安交通大学学报, 2022, 56(1): 165-176.
DANG Q, CUI A J, SHANG W B, et al.Affinity propagation clustering method of typical load curve with Euclidean morphological distance[J]. Journal of Xi’an Jiaotong University, 2022, 56(1): 165-176.
[21] 秦宇, 许野, 王鑫鹏, 等. 基于改进FCM-LSTM的光伏出力短期预测研究[J]. 太阳能学报, 2024, 45(8): 304-313.
QIN Y, XU Y, WANG X P, et al.Study on short-term photovoltaic output prediction based on improved FCM-LSTM[J]. Acta energiae solaris sinica, 2024, 45(8): 304-313.
PDF(4916 KB)

Accesses

Citation

Detail

Sections
Recommended

/