MULTI-CRITERION IDENTIFICATION OF LOW-FREQUENCY MAIN TRANSFORMER INRUSH CURRENT OF OFFSHORE WIND POWER BASED ON FUZZY PROXIMITY DEGREE

Gao Shuping, Wu Xinyu, Xi Ali, Quan Zhe, Wang Chenqing

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (12) : 599-608.

PDF(1273 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1273 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (12) : 599-608. DOI: 10.19912/j.0254-0096.tynxb.2024-1435

MULTI-CRITERION IDENTIFICATION OF LOW-FREQUENCY MAIN TRANSFORMER INRUSH CURRENT OF OFFSHORE WIND POWER BASED ON FUZZY PROXIMITY DEGREE

  • Gao Shuping1,2, Wu Xinyu1,2, Xi Ali1,2, Quan Zhe1,2, Wang Chenqing1,3
Author information +
History +

Abstract

Since both ends of the AC transmission and output lines of the low-frequency transmission system of offshore wind power are power electronic equipment, current distortion in the process of grid failure may cause the adaptability decline of the existing protection . To solve these problems, this paper proposes a new method of multi-criterion comprehensive identification of transformer excitation inrush current based on fuzzy progress. The method synthesizes several characteristics of transformer inrush current, including the second harmonic, waveform symmetry, waveform sine and the ratio of reactive fundamental wave to active DC. By using different membership functions and combining the characteristics of each criterion, different weights are calculated. By synthesizing multiple criteria, the similarity degree between the comprehensive fuzzy set and the preset inrush current or internal fault standard fuzzy set is calculated using the progress function. At last, PSCAD is used to build the low-frequency transmission system model, and the operation state of the low-frequency transformer under different working conditions is simulated. The current data generated under different working conditions are processed and analyzed by Matlab, and the proposed identification method is verified. The results show that this method can synthesize the advantages of each criterion and realize the accurate and reliable identification of inrush current and internal fault in low-frequency offshore wind power system.

Key words

offshore wind power / fuzzy inference / feature extraction / low-frequency transformer / inrush current / closeness function

Cite this article

Download Citations
Gao Shuping, Wu Xinyu, Xi Ali, Quan Zhe, Wang Chenqing. MULTI-CRITERION IDENTIFICATION OF LOW-FREQUENCY MAIN TRANSFORMER INRUSH CURRENT OF OFFSHORE WIND POWER BASED ON FUZZY PROXIMITY DEGREE[J]. Acta Energiae Solaris Sinica. 2025, 46(12): 599-608 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1435

References

[1] 李姝玉. 基于M3C的低频输电系统稳态控制策略研究[D]. 北京: 华北电力大学, 2020.
LI S Y.Research on steady-state control strategy of low-frequency transmission system based on M3C[D]. Beijing: North China Electric Power University, 2020.
[2] 范小红, 孙士云, 张雪娟, 等. 双馈风电场短路电流特性对距离保护的影响及保护策略研究[J]. 电力系统保护与控制, 2020, 48(11): 18-27.
FAN X H, SUN S Y, ZHANG X J, et al.Study on the influence of short-circuit current characteristics of a doubly-fed wind farm on distance protection and protection strategy[J]. Power system protection and control, 2020, 48(11): 18-27.
[3] 万书亭, 张伯麟, 赵晓艳, 等. 基于振动信号的风力发电机组瞬时转速波动特性提取方法研究[J]. 太阳能学报, 2024, 45(11): 439-446.
WAN S T, ZHANG B L, ZHAO X Y, et al.Research on instantaneous speed fluctuation characteristics extraction method of wind turbine based on vibration signal[J]. Acta energiae solaris sinica, 2024, 45(11): 439-446.
[4] 郑涛, 李菁, 颜景娴, 等. 双馈风机短路电流二次谐波产生机理及其对变压器保护的影响[J]. 电网技术, 2020, 44(12): 4808-4816.
ZHENG T, LI J, YAN J X, et al.Second harmonic generation mechanism of short circuit current of DFIG and itsimpact on transformer protection[J]. Power system technology, 2020, 44(12): 4808-4816.
[5] 罗美玲, 国兴超, 于晓军, 等. 基于波形相关性分析的换流变压器零序差动保护方案[J]. 电力系统保护与控制, 2020, 48(12): 80-89.
LUO M L, GUO X C, YU X J, et al.Zero-sequence differential protection scheme for a converter transformer based on waveform correlation analysis[J]. Power system protection and control, 2020, 48(12): 80-89.
[6] 刘阳. 含三角形绕组变压器的单相等值电路的探讨[J]. 变压器, 2023, 60(4): 6-10.
LIU Y.Discussion on single-phase equivalent circuit of transformer with triangle winding[J]. Transformer, 2023, 60(4): 6-10.
[7] 陈佳骏. 基于模糊理论的变压器差动保护励磁涌流识别方法[J].设备管理与维修, 2024(16): 18-20.
CHEN J J.Identification method of excitation inrush current for transformer differential protection based on fuzzy theory[J]. Plant maintenance engineering, 2024(16): 18-20.
[8] 郑涛, 曹志辉. 基于模糊逻辑的变压器励磁涌流二次谐波闭锁方案[J]. 电力系统自动化, 2009, 33(2): 61-65.
ZHENG T, CAO Z H.Scheme for second harmonic block of magnetizing inrush current in transformers based on fuzzy logic[J]. Automation of electric power systems, 2009, 33(2): 61-65.
[9] 张国云, 孔令号. 基于电力大数据的配电变压器状态评估方法[J]. 河北电力技术, 2022, 41(4): 6-9, 36.
ZHANG G Y, KONG L H.Evaluation algorithm of distribution transformer operation state based on big power data[J]. Hebei electric power, 2022, 41(4): 6-9, 36.
[10] 吴俊,王磊,黄佳霖,等.变压器涌流Hamming贴近度模糊识别原理分析[J].电力系统保护与控制,2007,35(12): 1-4.
WU J, WANG L, HUANG J L, et al.Analysis of transformer inrush current Hamming close degree fuzzy recognition theory[J]. Power system protection and control, 2007, 35(12): 1-4.
[11] 石宜金, 谭贵生, 赵波, 等. 基于模糊综合评估模型与信息融合的电力变压器状态评估方法[J]. 电力系统保护与控制, 2022, 50(21): 167-176.
SHI Y J, TAN G S, ZHAO B, et al.Condition assessment method for power transformers based on fuzzy comprehensive evaluation and information fusion[J]. Power system protection and control, 2022, 50(21): 167-176.
[12] YANG B, LIU B Q, ZHOU H Y, et al.A critical survey of technologies of large offshore wind farm integration: summary, advances, and perspectives[J]. Protection and control of modern power systems, 2022, 7(2): 1-3.
[13] 王秀丽, 段子越, 孟永庆, 等. 分频输电系统运行特性与控制策略综述[J]. 高电压技术, 2023, 49(9): 3696-3707.
WANG X L, DUAN Z Y, MENG Y Q, et al.Review on operational characteristics and control strategies of fractional frequency transmission systems[J]. High voltage engineering, 2023, 49(9): 3696-3707.
[14] 程启明, 谢怡群, 马信乔, 等. 不平衡电网模块化多电平矩阵换流器的控制策略[J]. 高电压技术, 2023, 49(5): 1975-1984.
CHENG Q M, XIE Y Q, MA X Q, et al.Control strategy of modular multilevel matrix converter under unbalanced grid conditions[J]. High voltage engineering, 2023, 49(5): 1975-1984.
[15] ABDAYEM A, SAWMA J, KHATOUNIAN F, et al.A new control scheme for a single phase modular multilevel converter connected to the grid under unbalanced arm power conditions[C]//2022 IEEE 13th International Symposium on Power Electronics for Distributed Generation Systems (PEDG). Kiel, Germany, 2022: 1-6.
[16] 王文杰, 杨益平, 杭丽君, 等. 应用于交-交变换的M3C矩阵变换器系统控制策略[J]. 电力系统自动化, 2020, 44(12): 186-192.
WANG W J, YANG Y P, HANG L J, et al.Control strategy of M3C matrix converter system applied to AC-AC transformation[J]. Automation of electric power systems, 2020, 44(12): 186-192.
[17] 徐政, 张哲任. 低频输电技术原理之一: M3C的数学模型与等效电路[J]. 浙江电力, 2021, 40(10): 13-21.
XU Z, ZHANG Z R.Principles of low frequency power transmission technology: part 1-mathematical model and equivalent circuit of M3C[J]. Zhejiang electric power, 2021, 40(10): 13-21.
[18] 徐政, 张哲任. 低频输电技术原理之二: M3C的稳态特性与主回路参数设计[J]. 浙江电力, 2021, 40(10): 22-29.
XU Z, ZHANG Z R.Principles of low frequency power transmission technology: part 2-the steady-state characteris tics of M3C and the design of main circuit parameters[J]. Zhejiang electric power, 2021, 40(10): 22-29.
[19] 徐政, 张哲任. 低频输电技术原理之三: M3C基本控制策略与子模块电压平衡控制[J].浙江电力, 2021, 40(10): 30-41.
XU Z, ZHANG Z R.Principles of low frequency power transmission technology: part 3-basic control strategy for the M3C and submodule voltage balance control[J]. Zhejiang electric power, 2021, 40(10): 30-41.
[20] 张翀. 模块化多电平矩阵换流器在AC/AC系统应用中的关键技术研究[D]. 杭州: 浙江大学, 2020.
ZHANG C.Research on the key technologies of modular multilevel matrix converter in AC/AC system[D]. Hangzhou: Zhejiang University, 2020.
[21] 唐菊生. 基于二次谐波制动的变压器差动保护的研究[D]. 淮南: 安徽理工大学, 2018.
TANG J S.Research on transformer differential protection based on second harmonic braking[D]. Huainan: Anhui University of Science & Technology, 2018.
[22] 冯海洋, 束洪春, 杨兴雄, 等. 风电场柔直送出系统联接变故障特性分析及差动保护方案[J]. 太阳能学报, 2024, 45(1): 125-133.
FENG H Y, SHU H C, YANG X X, et al.Analysis of VSC-HVDC interface transformer fault characteristics and differential protection scheme in wind farms VSC-HVDC transmission system[J]. Acta energiae solaris sinica, 2024, 45(1): 125-133.
[23] 常惜阳, 李俊生. 基于模糊多判据综合原理的变压器励磁涌流识别[J]. 机电技术, 2023(4): 70-73.
CHANG X Y, LI J S.Identification of transformer excitation inrush current based on fuzzy multi-criterion synthesis principle[J]. Mechanical & electrical technology, 2023(4): 70-73.
[24] 刘丁源, 裴磊, 魏炯, 等. 基于模糊C均值算法的电力变压器聚类分析[J]. 能源与环保, 2021, 43(6): 224-228.
LIU D Y, PEI L, WEI J, et al.Cluster analysis of power transformers based on fuzzy C-means algorithm[J]. China energy and environmental protection, 2021, 43(6): 224-228.
[25] 张苏红. 基于变权重模糊综合评价的变压器状态评估方法[J].江西电力职业技术学院学报, 2022, 35(2):9-13.
ZHANG S H.Transformer state evaluation method based on variable weight fuzzy comprehensive evaluation[J]. Journal of Jiangxi Vocational and Technical College of Electricity, 2022, 35(2): 9-13.
[26] 卢雪峰. 变压器励磁涌流多判据的模糊识别[D]. 保定: 华北电力大学, 2007.
LU X F.The fuzzy diagnosis of the transformer inrush current based on the multi-criterions[D]. Baoding: North China Electric Power University, 2007.
[27] 秦宇, 许野, 王鑫鹏, 等. 基于改进FCM-LSTM的光伏出力短期预测研究[J]. 太阳能学报, 2024, 45(8): 304-313.
QIN Y, XU Y, WANG X P, et al.Study on short-term photovoltaic output prediction based on improved FCM-LSTM[J]. Acta energiae solaris sinica, 2024, 45(8): 304-313.
[28] 苏振. 变压器励磁涌流识别方法的研究[D]. 长沙: 湖南大学, 2018.
SU Z.Research on identification method of power transformer inrush current[D]. Changsha: Hunan University, 2018.
[29] 刘超, 陈凤涛. 基于PSCAD/EMTDC的变压器励磁涌流仿真研究[J]. 变压器, 2020, 57(5): 44-47.
LIU C, CHEN F T.Research on simulation of inrush current in transformer based on PSCAD/EMTDC[J]. Transformer, 2020, 57(5): 44-47.
[30] CHAI J M, ZHENG Y P, PAN S Y.Rotating phasor-based algorithm for the identification of inrush currents of three-phase transformers[J]. Electric power systems research, 2023, 214: 108936.
PDF(1273 KB)

Accesses

Citation

Detail

Sections
Recommended

/