INFLUENCE OF DIFFERENT PULSATION SOURCES ON ANGLE OF ATTACK AND UNSTEADY AERODYNAMIC CHARACTERISTICS OF WIND TURBINE

Li Yinran, Wei Kui, Guo Xingduo, Zhang Sucai, Liu Yinhuan

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (12) : 589-598.

PDF(1930 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1930 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (12) : 589-598. DOI: 10.19912/j.0254-0096.tynxb.2024-1439

INFLUENCE OF DIFFERENT PULSATION SOURCES ON ANGLE OF ATTACK AND UNSTEADY AERODYNAMIC CHARACTERISTICS OF WIND TURBINE

  • Li Yinran1,2, Wei Kui1, Guo Xingduo1, Zhang Sucai1, Liu Yinhuan1
Author information +
History +

Abstract

Four unsteady pulsation sources including turbulence, yaw, shear flow and tower shadow are constructed, and large eddy simulation was used to study the influence of the unsteady pulsation sources on the angle of attack and aerodynamic unsteady characteristics of the wind turbine airfoil. The study shows that under yaw and wind shear conditions, the angle of attack and lift coefficient both show an approximate sine and cosine fluctuation pattern. Under tower shadow conditions, the angle of attack and lift coefficient drop sharply near an azimuth angle of 180°. Under turbulence conditions, the angle of attack shows randomness in both time and space dimensions. Except for wind shear, the fluctuation amplitude of the angle of attack and lift coefficient under other working conditions increases roughly from the tip to the root of the blade. The unsteady pulsation source greatly increases the pressure fluctuations on the leading edge of the pressure side and the suction side, and the increase is more obvious as it approaches the blade tip; In addition, the pressure fluctuation on the suction side of the blade is greater than that on the pressure side. Turbulence is an unsteady pulsation source that induces most significant fluctuations in the blade angle of attack, lift coefficient, and pressure. The incoming velocity spectrum shows a slope of -5/3 in the inertial subrange, while the output power spectrum shows a slope of -11/3. There exists a nonlinear interaction between these two slopes. Furthermore, the pressure fluctuations caused by turbulence near the leading edge exhibit strong periodicity and respond more intensely to large-scale turbulence.

Key words

wind turbines / unsteady / lift / angle of attack / pressure / turbulence

Cite this article

Download Citations
Li Yinran, Wei Kui, Guo Xingduo, Zhang Sucai, Liu Yinhuan. INFLUENCE OF DIFFERENT PULSATION SOURCES ON ANGLE OF ATTACK AND UNSTEADY AERODYNAMIC CHARACTERISTICS OF WIND TURBINE[J]. Acta Energiae Solaris Sinica. 2025, 46(12): 589-598 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1439

References

[1] 迟永宁, 张占奎, 李琰, 等. 大规模风电并网技术问题及标准发展[J]. 华北电力技术, 2017(3): 1-7.
CHI Y N, ZHANG Z K, LI Y, et al.Development of large-scale wind power grid integration and technical standard[J]. North China electric power, 2017(3): 1-7.
[2] REZAEIHA A, PEREIRA R, KOTSONIS M.Fluctuations of angle of attack and lift coefficient and the resultant fatigue loads for a large horizontal axis wind turbine[J]. Renewable energy, 2017, 114: 904-916.
[3] 刘正刚, 袁凌, 林明. 风切变与塔影效应下5 MW大型风力机气动性能数值模拟研究[J]. 能源工程, 2023, 43(2): 25-30.
LIU Z G, YUAN L, LIN M.Numerical simulation of aerodynamic performance of 5 MW wind turbine under wind shear and tower shadow[J]. Energy engineering, 2023, 43(2): 25-30.
[4] 汪建文, 赵爽, 白叶飞, 等. 切变和变风向入流对偏航风力机气动特性的影响研究[J]. 中国电机工程学报, 2025, 45(8): 3079-3092.
WANG J W, ZHAO S, BAI Y F, et al.Study on the influence of wind shear and wind direction variation inflow on aerodynamic characteristics of yawed wind turbines[J]. Proceedings of the CSEE, 2025, 45(8): 3079-3092.
[5] CHAMORRO L P, LEE S J, OLSEN D, et al.Turbulence effects on a full-scale 2.5 MW horizontal-axis wind turbine under neutrally stratified conditions[J]. Wind energy, 2015, 18(2): 339-349.
[6] YE Z L, WANG X D, CHEN Z W, et al.Unsteady aerodynamic characteristics of a horizontal wind turbine under yaw and dynamic yawing[J]. Acta mechanica sinica, 2020, 36(2): 320-338.
[7] 付健祥. 多波动负荷引起的电压闪变的分析与检测方法研究[D]. 长沙: 湖南大学, 2023.
FU J X.Analysis and detection methods for voltage flicker caused by multiple fluctuating loads[D]. Changsha: Hunan University, 2023.
[8] GAO L Y, YANG S, ABRAHAM A, et al.Effects of inflow turbulence on structural response of wind turbine blades[J]. Journal of wind engineering and industrial aerodynamics, 2020, 199: 104137.
[9] 刘磊, 石可重, 杨科, 等. 风切变对风力机气动载荷的影响[J]. 工程热物理学报, 2010, 31(10): 1667-1670.
LIU L, SHI K Z, YANG K, et al.Effect of wind shear on the aerodynamic load of wind turbine[J]. Journal of engineering thermophysics, 2010, 31(10): 1667-1670.
[10] 陈晓明, 康顺. 偏航和风切变下风力机气动特性的研究[J]. 太阳能学报, 2015, 36(5): 1105-1111.
CHEN X M, KANG S.Research on wind turbine aerodynamic characteristics under yaw and shear[J]. Acta energiae solaris sinica, 2015, 36(5): 1105-1111.
[11] 温斌荣, 魏莎, 魏克湘, 等. 风切变和塔影效应对风力机输出功率的影响[J]. 机械工程学报, 2018, 54(10): 124-132.
WEN B R, WEI S, WEI K X, et al.Influences of wind shear and tower shadow on the power output of wind turbine[J]. Journal of mechanical engineering, 2018, 54(10): 124-132.
[12] YANG Z Y.Large-eddy simulation: past, present and the future[J]. Chinese journal of aeronautics, 2015, 28(1): 11-24.
[13] WANG J H, LI C, HUANG S H, et al.Large eddy simulation of turbulent atmospheric boundary layer flow based on a synthetic volume forcing method[J]. Journal of wind engineering and industrial aerodynamics, 2023, 233: 105326.
[14] ABOSHOSHA H, ELSHAER A, BITSUAMLAK G T, et al.Consistent inflow turbulence generator for LES evaluation of wind-induced responses for tall buildings[J]. Journal of wind engineering and industrial aerodynamics, 2015, 142: 198-216.
[15] 江瑞芳, 赵振宙, 冯俊鑫, 等. 涡流发生器对风力机叶片流动控制的数值研究[J]. 工程热物理学报, 2021, 42(12): 3170-3177.
JIANG R F, ZHAO Z Z, FENG J X, et al.Numerical study on flow control of wind turbine blade by vortex generators[J]. Journal of engineering thermophysics, 2021, 42(12): 3170-3177.
[16] JEONG M S, KIM S W, LEE I, et al.The impact of yaw error on aeroelastic characteristics of a horizontal axis wind turbine blade[J]. Renewable energy, 2013, 60: 256-268.
[17] 李银然, 赵丽, 李德顺, 等. 偏航工况下叶片翼型动态特性研究[J]. 太阳能学报, 2022, 43(7): 326-333.
LI Y R, ZHAO L, LI D S, et al.Study on dynamic characteristics of blade airfoil under yaw condition[J]. Acta energiae solaris sinica, 2022, 43(7): 326-333.
[18] 付德义, 薛扬, 边伟, 等. 风切变指数对于风电机组载荷特性影响研究[J]. 太阳能学报, 2018, 39(5): 1380-1387.
FU D Y, XUE Y, BIAN W, et al.Effects of wind shear exponents on wind turbine load characteristics[J]. Acta energiae solaris sinica, 2018, 39(5): 1380-1387.
[19] 孔屹刚, 顾浩, 王杰, 等. 基于风剪切和塔影效应的大型风力机载荷分析与功率控制[J]. 东南大学学报(自然科学版), 2010, 40(增刊1): 228-233.
KONG Y G, GU H, WANG J, et al.Load analysis and power control of large wind turbine based on wind shear and tower shadow[J]. Journal of Southeast University (natural science edition), 2010, 40(S1): 228-233.
[20] 郭兴铎, 李银然, 李仁年, 等. 湍流条件下风力机翼型动态气动特性研究[J]. 太阳能学报, 2024, 45(6): 556-563.
GUO X D, LI Y R, LI R N, et al.Study on dynamic characteristics of wind turbine airfoil under turbulent conditions[J]. Acta energiae solaris sinica, 2024, 45(6): 556-563.
[21] 张旭耀, 杨从新, 李寿图, 等. 风剪切来流下风力机流场特性与风轮气动载荷研究[J]. 太阳能学报, 2019, 40(11): 3281-3288.
ZHANG X Y, YANG C X, LI S T, et al.Study on flow field characteristics and aerodynamic loads of horizontal axis wind turbine in shear inflow[J]. Acta energiae solaris sinica, 2019, 40(11): 3281-3288.
[22] 陈安新, 孙锐, 王凯, 等. 基于致动线和大涡模拟的不同入流风况下的风力机尾流特性研究[J]. 可再生能源, 2021, 39(10): 1354-1361.
CHEN A X, SUN R, WANG K, et al.Research on wake characteristics of wind turbine under different inflow wind conditions based on actuation line and large eddy simulation[J]. Renewable energy resources, 2021, 39(10): 1354-1361.
PDF(1930 KB)

Accesses

Citation

Detail

Sections
Recommended

/