RESEARCH ON PARTIAL DISCHARGE LOCALIZATION OF POWER FREQUENCY TRANSFORMERS IN GRID CONNECTED SOLAR PHOTOVOLTAIC POWER GENERATION

Zheng Li, Yan Guanghui, Tang Chunyang

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (12) : 178-185.

PDF(1084 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1084 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (12) : 178-185. DOI: 10.19912/j.0254-0096.tynxb.2024-1442

RESEARCH ON PARTIAL DISCHARGE LOCALIZATION OF POWER FREQUENCY TRANSFORMERS IN GRID CONNECTED SOLAR PHOTOVOLTAIC POWER GENERATION

  • Zheng Li1,2, Yan Guanghui1, Tang Chunyang1,2
Author information +
History +

Abstract

To address the issues of electromagnetic interference around power frequency transformers in solar photovoltaic power grid connection, as well as complex signal analysis caused by multiple discharge sources discharging simultaneously or alternately, and difficulty in locating partial discharges, a method for locating partial discharges in power frequency transformers in solar photovoltaic power grid connection is studied to improve the effectiveness of partial discharge localization. Based on the analysis of the structure of the solar photovoltaic grid connected power generation system, determine the key components and monitoring point locations. Using ultrasonic sensors to capture the ultrasonic signals generated by partial discharge in power frequency transformers, and based on the time difference positioning method, utilizing the time delay difference between ultrasonic signals to locate the location of partial discharge; considering that the overdetermined equation system used in the time difference localization method is difficult to obtain an accurate solution for the location of partial discharge, the time difference localization method is transformed into an optimization problem for the location of partial discharge. The objective function is to minimize the time difference, and the nonlinearity of partial discharge localization is considered. The firefly algorithm is used to obtain an accurate solution for partial discharge localization that minimizes the time difference. The test results show that this method has a maximum positioning error of 0.05 cm and a positioning time of about 0.3 s for the partial discharge position of the power frequency transformer in the grid connected solar photovoltaic power generation. It has good positioning effect and high positioning efficiency.

Key words

solar energy / grid connection of photovoltaic power generation / power frequency transformer / localization of partial discharge / ultrasonic / firefly algorithm

Cite this article

Download Citations
Zheng Li, Yan Guanghui, Tang Chunyang. RESEARCH ON PARTIAL DISCHARGE LOCALIZATION OF POWER FREQUENCY TRANSFORMERS IN GRID CONNECTED SOLAR PHOTOVOLTAIC POWER GENERATION[J]. Acta Energiae Solaris Sinica. 2025, 46(12): 178-185 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1442

References

[1] 张知先, 雷嘉丽, 陈伟根, 等. 基于多参量光纤F-P传感的变压器局部放电与油温传感方法[J]. 高电压技术, 2022, 48(1): 58-65.
ZHANG Z X, LEI J L, CHEN W G, et al.Transformer’s partial discharge and oil temperature sensing method based on multi-parameter fiber optic F-P sensing[J]. High voltage engineering, 2022, 48(1): 58-65.
[2] 贾骏, 陶风波, 杨强, 等. 复杂多径传播条件下变压器局部放电定位方法研究[J]. 中国电机工程学报, 2022, 42(14): 5338-5348.
JIA J, TAO F B, YANG Q, et al.Research on partial discharge location method of transformer under complex multipath propagation[J]. Proceedings of the CSEE, 2022, 42(14): 5338-5348
[3] 冯晓泽, 寇鹏, 梁得亮, 等. 基于压缩感知和指纹图谱的变压器局部放电空间定位方法[J]. 高压电器, 2023, 59(12): 160-167.
FENG X Z, KOU P, LIANG D L, et al.Spatial location method of partial discharge in power transformer using compressed sensing and fingerprinting[J]. High voltage apparatus, 2023, 59(12): 160-167.
[4] 黄盛洁, 姚文捷. 数字技术用于电力变压器局部放电定位[J]. 变压器, 2023, 60(1): 35-40.
HUANG S J, YAO W J.Digital technology for partial discharge location of power transformer[J]. Transformer, 2023, 60(1): 35-40.
[5] 文豪, 张国治, 肖黎, 等. 基于小样本UHF信号的变压器局部放电平面定位技术研究[J]. 变压器, 2022, 59(4): 54-59.
WEN H, ZHANG G Z, XIAO L, et al.Research on localization technology of transformer partial discharge plane based on small sample UHF signal[J]. Transformer, 2022, 59(4): 54-59.
[6] 曾凌烽, 林朝哲, 黄建理, 等. 光纤分立式多点局部放电检测与定位技术[J]. 应用光学, 2023, 44(5): 1125-1132.
ZENG L F, LIN C Z, HUANG J L, et al.Discrete multi-point partial discharge detection and location technology of optical fiber[J]. Journal of applied optics, 2023, 44(5): 1125-1132.
[7] 付子义, 张字远, 董彦杰. 弱电网条件下LCL型三相光伏并网逆变器研究[J]. 太阳能学报, 2021, 42(4): 193-199.
FU Z Y, ZHANG Z Y, DONG Y J.LCL type three-phase photovoltaic grid-connected inverter under week grid conditions[J]. Acta energiae solaris sinica, 2021, 42(4): 193-199.
[8] 席禹, 林冬, 于力, 等. 基于超高频传感器的电力变压器局部放电定位研究[J]. 绝缘材料, 2022, 55(12): 80-86.
XI Y, LIN D, YU L, et al.Research on partial discharge location of power transformer based on UHF sensor[J]. Insulating materials, 2022, 55(12): 80-86.
[9] 赵巍, 王雅坤, 滕甲训, 等. 一种基于三端口能量路由的单级式光储并网系统及其高压穿越技术[J]. 太阳能学报, 2022, 43(8): 91-95.
ZHAO W, WANG Y K, TENG J X, et al.A single-stage pv-ess grid-connected system based on triple-port energy routing and its high-voltage ride-through scheme[J]. Acta energiae solaris sinica, 2022, 43(8): 91-95.
[10] 杨玥坪, 树婷, 吴玖汕, 等. 变压器绕组局部放电量测量误差计算及其修正方法研究[J]. 西安交通大学学报, 2022, 56(10): 122-129.
YANG Y P, SHU T, WU J S, et al.Error analysis and correction of partial discharge quantity measurement of transformer windings[J]. Journal of Xi’an Jiaotong University, 2022, 56(10): 122-129.
[11] 孙静. 储能型光伏并网发电系统应用研究[J]. 储能科学与技术, 2023, 12(6): 2034-2035.
SUN J.Research on application of energy storage photovoltaic grid-connected power generation system[J]. Energy storage science and technology, 2023, 12(6): 2034-2035.
[12] 万曦, 陆文钦, 薛波, 等. 混合配电变压器无功和电压补偿控制策略研究[J]. 电力电子技术, 2022, 56(9): 41-45.
WAN X, LU W Q, XUE B, et al.Research on reactive power and voltage compensation control strategy of hybrid distribution transformer[J]. Power electronics, 2022, 56(9): 41-45.
[13] 吴天杰, 黄雄, 林少佳, 等. 基于超声波技术的配网架空线路故障检测系统[J]. 自动化技术与应用, 2022, 41(1): 116-120.
WU T J, HUANG X, LIN S J, et al.Distribution network overhead lines fault detection system based on ultrasonic technology[J]. Techniques of automation and applications, 2022, 41(1): 116-120.
[14] 孙宇微, 吕安强, 谢志远. 电缆及其附件局部放电超声波检测技术研究进展[J]. 电工电能新技术, 2022, 41(9): 47-57.
SUN Y W, LV A Q, XIE Z Y.Research progress of partial discharge ultrasonic detection technology for cable and its accessories[J]. Advanced technology of electrical engineering and energy, 2022, 41(9): 47-57.
[15] 林少佳, 吴天杰, 黄雄, 等. 基于超声波检测技术的配网架空线路故障定位方法[J]. 自动化与仪器仪表, 2021(4): 199-202, 206.
LIN S J, WU T J, HUANG X, et al.Fault location method of distribution network overhead lines based on ultrasonic detection technology[J]. Automation & instrumentation, 2021(4): 199-202, 206.
[16] 仲臣, 余学祥, 邰晓曼, 等. 萤火虫算法优化支持向量机室内定位研究[J]. 计算机工程与科学, 2022, 44(11): 1969-1975.
ZHONG C, YU X X, TAI X M, et al.Indoor positioning of support vector machine optimized by firefly algorithm[J]. Computer engineering & science, 2022, 44(11): 1969-1975.
[17] 王质素, 杜欣慧, 陈惠英, 等. 考虑动力电池梯次利用的混合发电厂容量配置[J]. 太阳能学报, 2022, 43(5): 533-540.
WANG Z S, DU X H, CHEN H Y, et al.Capacity optimization of hybrid power plants considering power battery ladder utilization[J]. Acta energiae solaris sinica, 2022, 43(5): 533-540.
PDF(1084 KB)

Accesses

Citation

Detail

Sections
Recommended

/