MECHANISM RESEARCH OF ENHANCEMENT POWER GRID STRENGTH BY GRID-FORMING CONTROL

Fang Xinglong, Hu Yang, Song Ziqiu, Liu Jizhen

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (12) : 406-416.

PDF(2354 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2354 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (12) : 406-416. DOI: 10.19912/j.0254-0096.tynxb.2024-1443

MECHANISM RESEARCH OF ENHANCEMENT POWER GRID STRENGTH BY GRID-FORMING CONTROL

  • Fang Xinglong1,2, Hu Yang1,2, Song Ziqiu1,2, Liu Jizhen1,2
Author information +
History +

Abstract

In order to further investigate the mechanism of grid-forming control to enhance the stability of the system, this paper firstly establishes the mathematical models of grid-following and grid-forming control, and analyzes the grid-connected oscillation characteristics of the two through the eigenvalue analysis method. Secondly, based on the deficiencies in the calculation of short-circuit ratio of existing renewable energy stations, a correction method for the calculation of equivalent short-circuit ratio of hybrid systems of grid-following and grid-forming is proposed. Subsequently, the article quantitatively deduces the change rule of system short-circuit capacity and equivalent short-circuit ratio caused by the access of grid-forming control units to the system of grid-following units, proves that the process of increasing the proportion of grid-forming units can effectively improve the stability of the system from the point of view of improving the system short-circuit ratio of grid-following units, and verifies the validity of the obtained conclusions based on the electromagnetic transient simulation model.

Key words

grid-forming control / grid-following control / system stability / power grid strength / short-circuit ratio / renewable energy system

Cite this article

Download Citations
Fang Xinglong, Hu Yang, Song Ziqiu, Liu Jizhen. MECHANISM RESEARCH OF ENHANCEMENT POWER GRID STRENGTH BY GRID-FORMING CONTROL[J]. Acta Energiae Solaris Sinica. 2025, 46(12): 406-416 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1443

References

[1] 程静, 苏乐, 岳雷. 新能源接入电力系统的宽频振荡风险识别与抑制[J]. 太阳能学报, 2023, 44(11): 565-574.
CHENG J, SU L, YUE L.Power system broadband oscillation risk identification and suppression for new energy access[J]. Acta energiae solaris sinica, 2023, 44(11): 565-574.
[2] 马燕峰, 陈鑫, 刘新元, 等. 考虑新能源场站间相互作用的宽频振荡特性研究[J]. 太阳能学报, 2024, 45(1): 563-573.
MA Y F, CHEN X, LIU X Y, et al.Study on broadband oscillation characteristics considering interaction between new energy stations[J]. Acta energiae solaris sinica, 2024, 45(1): 563-573.
[3] 秦世耀, 齐琛, 李少林, 等. 电压源型构网风电机组研究现状及展望[J]. 中国电机工程学报, 2023, 43(4): 1314-1334.
QIN S Y, QI C, LI S L, et al.Review of the voltage-source grid forming wind turbine[J]. Proceedings of the CSEE, 2023, 43(4): 1314-1334.
[4] 周孝信, 鲁宗相, 刘应梅, 等. 中国未来电网的发展模式和关键技术[J]. 中国电机工程学报, 2014, 34(29): 4999-5008.
ZHOU X X, LU Z X, LIU Y M, et al.Development models and key technologies of future grid in China[J]. Proceedings of the CSEE, 2014, 34(29): 4999-5008.
[5] 康重庆, 姚良忠. 高比例可再生能源电力系统的关键科学问题与理论研究框架[J]. 电力系统自动化, 2017, 41(9): 2-11.
KANG C Q, YAO L Z.Key scientific issues and theoretical research framework for power systems with high proportion of renewable energy[J]. Automation of electric power systems, 2017, 41(9): 2-11.
[6] GWEC. Global wind report2023 [R/OL]. [2023-07-16]. https://gwec.net/global-wind-report-2023/.
[7] XUE Z J, LI S Y, LI J D, et al.OFDM radar and communication joint system using opto-electronic oscillator with phase noise degradation analysis and mitigation[J]. Journal of lightwave technology, 2022, 40(13): 4101-4109.
[8] WANG X F, BLAABJERG F, WU W M.Modeling and analysis of harmonic stability in an AC power-electronics-based power system[J]. IEEE transactions on power electronics, 2014, 29(12): 6421-6432.
[9] MATEVOSYAN J, BADRZADEH B, PREVOST T, et al.Grid-forming inverters: are they the key for high renewable penetration?[J]. IEEE power and energy magazine, 2019, 17(6): 89-98.
[10] 刘朋印, 谢小荣, 李原, 等. 构网型控制改善跟网型变流器次/超同步振荡稳定性的机理和特性分析[J]. 电网技术, 2024, 48(3): 990-997.
LIU P Y, XIE X R, LI Y, et al.Mechanism and characteristics of grid-forming control for improving sub/super synchronous oscillation stability of grid-following-based grid-connected converter[J]. Power system technology, 2024, 48(3): 990-997.
[11] 刘其辉, 高瑜, 郭天飞, 等. 风电并网系统阻抗稳定性分析及次同步振荡因素研究[J]. 太阳能学报, 2022, 43(1): 89-100.
LIU Q H, GAO Y, GUO T F, et al.Research on impedance stability analysis and subsynchronous oscillation factors of wind power grid-connected system[J]. Acta energiae solaris sinica, 2022, 43(1): 89-100.
[12] 徐政. 新型电力系统背景下电网强度的合理定义及其计算方法[J]. 高电压技术, 2022, 48(10): 3805-3819.
XU Z.Reasonable definition and calculation method of power grid strength under the background of new type power systems[J]. High voltage engineering, 2022, 48(10): 3805-3819.
[13] YANG C R, HUANG L B, XIN H H, et al.Placing grid-forming converters to enhance small signal stability of PLL-integrated power systems[J]. IEEE transactions on power systems, 2021, 36(4): 3563-3573.
[14] ZHANG H B, XIANG W, LIN W X, et al.Grid forming converters in renewable energy sources dominated power grid: control strategy, stability, application, and challenges[J]. Journal of modern power systems and clean energy, 2021, 9(6): 1239-1256.
[15] 蔡旭, 秦垚, 王晗, 等. 风电机组的自同步电压源控制研究综述[J]. 高电压技术, 2023, 49(6): 2478-2490.
CAI X, QIN Y, WANG H, et al.Review of self-synchronous voltage source control for wind turbine generator[J]. High voltage engineering, 2023, 49(6): 2478-2490.
[16] ROCABERT J, LUNA A, BLAABJERG F, et al.Control of power converters in AC microgrids[J]. IEEE transactions on power electronics, 2012, 27(11): 4734-4749.
[17] UNRUH P, NUSCHKE M, STRAUß P, et al.Overview on grid-forming inverter control methods[J]. Energies, 2020, 13(10): 2589.
[18] DE BRABANDERE K, BOLSENS B, VAN DEN KEYBUS J, et al. A voltage and frequency droop control method for parallel inverters[J]. IEEE transactions on power electronics, 2007, 22(4): 1107-1115.
[19] 何鑫, 左芸裴, 杨映海, 等. 基于虚拟同步机参数自适应调节的并网逆变器控制策略研究[J]. 太阳能学报, 2024, 45(7): 259-266.
HE X, ZUO Y P, YANG Y H, et al.Research on control strategy of grid-connected inverter based on parameter adaptive adjustment of virtual synchronous generator[J]. Acta energiae solaris sinica, 2024, 45(7): 259-266.
[20] COLOMBINO M, GROß D, BROUILLON J S, et al.Global phase and magnitude synchronization of coupled oscillators with application to the control of grid-forming power inverters[J]. IEEE transactions on automatic control, 2019, 64(11): 4496-4511.
[21] ARGHIR C, DÖRFLER F. The electronic realization of synchronous machines: model matching, angle tracking, and energy shaping techniques[J]. IEEE transactions on power electronics, 2020, 35(4): 4398-4410.
[22] COLLADOS-RODRIGUEZ C, CHEAH-MANE M, PRIETO-ARAUJO E, et al.Stability and operation limits of power systems with high penetration of power electronics[J]. International journal of electrical power & energy systems, 2022, 138: 107728.
[23] 张海华, 刘福才. 考虑风电消纳的区域综合能源系统优化运行分析[J]. 太阳能学报, 2023, 44(10): 585.
ZHANG H H, LIU F C.Optimized operation analysis of regional integrated energy system considering wind power consumption[J]. Acta energiae solaris sinica, 2023, 44(10): 585.
[24] 罗澍忻, 韩应生, 余浩, 等. 构网型控制在提升高比例新能源并网系统振荡稳定性中的应用[J]. 南方电网技术, 2023, 17(5): 39-48.
LUO S X, HAN Y S, YU H, et al.Application of grid-forming control in improving the oscillation stability of power systems with high proportion renewable energy integration[J]. Southern power system technology, 2023, 17(5): 39-48.
PDF(2354 KB)

Accesses

Citation

Detail

Sections
Recommended

/