TOPOLOGY OPTIMIZATION METHODOLOGY FOR WIND TURBINE FRONT MAINFRAME USING SURROGATE MODEL

Shu Jiaojiao, Wang Hui, Ni Min, Zhao Chunyu, Liu Shengju, Long Kai

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (12) : 584-588.

PDF(2731 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2731 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (12) : 584-588. DOI: 10.19912/j.0254-0096.tynxb.2024-1448

TOPOLOGY OPTIMIZATION METHODOLOGY FOR WIND TURBINE FRONT MAINFRAME USING SURROGATE MODEL

  • Shu Jiaojiao, Wang Hui, Ni Min, Zhao Chunyu, Liu Shengju, Long Kai
Author information +
History +

Abstract

The growing capacity of wind turbines and the tendency towards offshore wind turbines pose a challenge in balancing the need for lightweight structures and high reliability. Simultaneously, intensifying market competitiveness results in a reduction in the research and development cycle for the entire machine. To address the aforementioned issues, a structural topology optimization approach for the wind turbine front mainframe was proposed, utilizing a surrogate model. With the goal of minimizing compliance, an artificial volume ratio constraint was set, and torques in different directions were applied to the hub center. The topological optimization results in each direction were obtained and their characteristics were analyzed. The front mainframe was remodeled, and the surrogate model using the finite element method was analyzed to identify the structural construction and its dimensions. The verification results of the optimized structure for its ultimate and fatigue strength demonstrate that the suggested topology optimization methodology is both possible and effective in achieving the lightweight design for the wind turbine front mainframe. Additionally, the product development cycle is significantly reduced.

Key words

wind turbines / fatigue damage / structural design / topology optimization / surrogate model

Cite this article

Download Citations
Shu Jiaojiao, Wang Hui, Ni Min, Zhao Chunyu, Liu Shengju, Long Kai. TOPOLOGY OPTIMIZATION METHODOLOGY FOR WIND TURBINE FRONT MAINFRAME USING SURROGATE MODEL[J]. Acta Energiae Solaris Sinica. 2025, 46(12): 584-588 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1448

References

[1] WANG Z J, SUIKER A S J, HOFMEYER H, et al. Coupled aerostructural shape and topology optimization of horizontal-axis wind turbine rotor blades[J]. Energy conversion and management, 2020, 212: 112621.
[2] 李宏宇, 孙鹏文, 张兰挺, 等. 基于ICM的风力机叶片多相材料拓扑优化设计[J]. 太阳能学报, 2021, 42(12): 261-266.
LI H Y, SUN P W, ZHANG L T, et al.Topology optimization design for multiphase materials of wind turbine blade based on ICM[J]. Acta energiae solaris sinica, 2021, 42(12): 261-266.
[3] 马志坤, 孙鹏文, 张兰挺, 等. 基于DMO的风力机叶片细观纤维铺角优化设计[J]. 太阳能学报, 2022, 43(4): 440-445.
MA Z K, SUN P W, ZHANG L T, et al.Optimization design of micro ply angle for wind turbines blade based on DMO[J]. Acta energiae solaris sinica, 2022, 43(4): 440-445.
[4] 刁晓航, 孙鹏文, 马志坤, 等. 基于相变量的风力机叶片宏观拓扑优化设计[J]. 太阳能学报, 2023, 44(3): 198-203.
DIAO X H, SUN P W, MA Z K, et al.Macro topology optimization design of wind turbine blade based on phase variables[J]. Acta energiae solaris sinica, 2023, 44(3): 198-203.
[5] LEE Y S, GONZÁLEZ J A, LEE J H, et al. Structural topology optimization of the transition piece for an offshore wind turbine with jacket foundation[J]. Renewable energy, 2016, 85: 1214-1225.
[6] TIAN X J, SUN X Y, LIU G J, et al.Optimization design of the jacket support structure for offshore wind turbine using topology optimization method[J]. Ocean engineering, 2022, 243: 110084.
[7] 张承婉, 张锦华, 龙凯, 等. 海上风电机组多导管架拓扑优化方法[J]. 太阳能学报, 2023, 44(6): 495-500.
ZHANG C W, ZHANG J H, LONG K, et al.Topology optimization methodology on multi-jacket structure for offshore wind turbine[J]. Acta energiae solaris sinica, 2023, 44(6): 495-500.
[8] YU Y, WEI M X, YU J X, et al.Reliability-based design method for marine structures combining topology, shape, and size optimization[J]. Ocean engineering, 2023, 286: 115490.
[9] MARJAN A, HUANG L F.Topology optimisation of offshore wind turbine jacket foundation for fatigue life and mass reduction[J]. Ocean engineering, 2023, 289: 116228.
[10] LU F Y, LONG K, ZHANG C W, et al.A novel design of the offshore wind turbine tripod structure using topology optimization methodology[J]. Ocean engineering, 2023, 280: 114607.
[11] LU F Y, LONG K, DIAELDIN Y, et al.A time-domain fatigue damage assessment approach for the tripod structure of offshore wind turbines[J]. Sustainable energy technologies and assessments, 2023, 60: 103450.
[12] 陆飞宇, 张承婉, 龙凯, 等. 风电机组主轴承座抗疲劳拓扑优化设计方法[J]. 太阳能学报, 2023, 44(8): 518-523.
LU F Y, ZHANG C W, LONG K, et al.Fatigue-resistance topology optimization method for main bearing seat of wind turbines[J]. Acta energiae solaris sinica, 2023, 44(8): 518-523.
[13] LONG K, WANG X, LIU H L.Stress-constrained topology optimization of continuum structures subjected to harmonic force excitation using sequential quadratic programming[J]. Structural and multidisciplinary optimization, 2019, 59(5): 1747-1759.
[14] CHEN Z, LONG K, WEN P, et al.Fatigue-resistance topology optimization of continuum structure by penalizing the cumulative fatigue damage[J]. Advances in engineering software, 2020, 150: 102924.
[15] CHEN Z, LONG K, ZHANG C W, et al.A fatigue-resistance topology optimization formulation for continua subject to general loads using rainflow counting[J]. Structural and multidisciplinary optimization, 2023, 66(9): 210.
[16] DNV GL.Machinery for wind turbines[S]. Standard DNVGL-ST-0361. DNV GL AS Oslo, Norway, 2016.
[17] BENDSØE M P, SIGMUND O. Topology optimization: theory, methods, and applications[M]. 2nd ed., corr. print. Berlin: Springer, 2004.
[18] THOMAS H, ZHOU M, SCHRAMM U.Issues of commercial optimization software development[J]. Structural and multidisciplinary optimization, 2002, 23(2): 97-110.
[19] ZHOU M, SHYY, THOMAS H L. Checkerboard and minimum member size control in topology optimization[J]. Structural and multidisciplinary optimization, 2001, 21(2): 152-158.
[20] 王慧, 舒娇娇, 倪敏, 等. 基于拓扑优化的风电机组前机舱底座轻量化设计[J]. 太阳能学报, 2025, 46(9): 11-16.
WANG H, SHU J J, NI M, et al.Lightweight design of front nacelle base of wind turbine based on topology optimization[J]. Acta energiae solaris sinica, 2025, 46(9): 11-16.
[21] IEC 61400-3. Wind turbines-Part 3: Design requirements for offshore wind turbinesEC 61400-3. Wind turbines-Part 3: Design requirements for offshore wind turbines[S]. Geneva: International Electrotechnical Commission, 2019.
PDF(2731 KB)

Accesses

Citation

Detail

Sections
Recommended

/