DISTRIBUTED SECONDARY FREQUENCY CONTROL STRATEGY FOR ISLANDED MICROGRID BASED ON KURAMOTO MODEL

Wang Li, Shu Yi, Zhao Bin, Zeng Xiangjun

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (12) : 396-405.

PDF(2439 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2439 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (12) : 396-405. DOI: 10.19912/j.0254-0096.tynxb.2024-1449

DISTRIBUTED SECONDARY FREQUENCY CONTROL STRATEGY FOR ISLANDED MICROGRID BASED ON KURAMOTO MODEL

  • Wang Li1,2, Shu Yi1, Zhao Bin1,2, Zeng Xiangjun1,2
Author information +
History +

Abstract

To address frequency deviation or instability in islanded microgrids with droop control caused by power imbalances, a distributed secondary frequency control strategy based on the Kuramoto model was proposed. The Kuramoto model was employed to systematically model the dynamic behavior of frequency within the islanded microgrid and to design frequency control at the system level. The PI consensus algorithm was used to design the distributed secondary frequency controller, optimizing frequency deviation. Each distributed generation unit relied solely on local and adjacent unit information to achieve a rational distribution of active power loads according to its capacity. The strategy demonstrated robustness against communication network delays, and its asymptotic stability was proven using the Lyapunov direct method. Simulation under various operating conditions on the Matlab/Simulink platform verified the effectiveness of the proposed strategy in reducing system frequency deviation.

Key words

microgrid / Kuramoto model / consensus algorithm / communication delay / distributed secondary frequency control

Cite this article

Download Citations
Wang Li, Shu Yi, Zhao Bin, Zeng Xiangjun. DISTRIBUTED SECONDARY FREQUENCY CONTROL STRATEGY FOR ISLANDED MICROGRID BASED ON KURAMOTO MODEL[J]. Acta Energiae Solaris Sinica. 2025, 46(12): 396-405 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1449

References

[1] 赵恩盛, 韩杨, 周思宇, 等. 微电网惯量与阻尼模拟技术综述及展望[J]. 中国电机工程学报, 2022, 42(4): 1413-1428.
ZHAO E S, HAN Y, ZHOU S Y, et al.Review and prospect of inertia and damping simulation technologies of microgrids[J]. Proceedings of the CSEE, 2022, 42(4): 1413-1428.
[2] 邢毓华, 任甜甜. 改进MOPSO在微电网优化调度中的应用研究[J]. 太阳能学报, 2024, 45(6): 191-200.
XING Y H, REN T T.Application research of improved MOPSO in microgrid optimal dispatch[J]. Acta energiae solaris sinica, 2024, 45(6): 191-200.
[3] 万千, 夏成军, 管霖, 等. 含高渗透率分布式电源的独立微网的稳定性研究综述[J]. 电网技术, 2019, 43(2): 598-612.
WAN Q, XIA C J, GUAN L, et al.Review on stability of isolated microgrid with highly penetrated distributed generations[J]. Power system technology, 2019, 43(2): 598-612.
[4] 钟诚, 姜志富, 张翔宇, 等. 含风光出力随机性的独立微电网二次频率控制[J]. 太阳能学报, 2024, 45(1): 523-533.
ZHONG C, JIANG Z F, ZHANG X Y, et al.Secondary frequency control of islanded microgrid considering wind and solar stochastics[J]. Acta energiae solaris sinica, 2024, 45(1): 523-533.
[5] 董家伟, 龚春阳, 包俊, 等. 事件触发改进一致性算法的孤岛运行多逆变器微电网系统分布式二次调频方法[J]. 中国电机工程学报, 2024, 44(2): 476-489.
DONG J W, GONG C Y, BAO J, et al.Event-triggered improved consensus algorithm distributed secondary frequency regulation of multi-inverter microgrid systems with islanded operation[J]. Proceedings of the CSEE, 2024, 44(2): 476-489.
[6] QIAN T, LIU Y, ZHANG W H, et al.Event-triggered updating method in centralized and distributed secondary controls for islanded microgrid restoration[J]. IEEE transactions on smart grid, 2020, 11(2): 1387-1395.
[7] LIU B J, WU T, LIU Z, et al.A small-AC-signal injection-based decentralized secondary frequency control for droop-controlled islanded microgrids[J]. IEEE transactions on power electronics, 2020, 35(11): 11634-11651.
[8] 杨珺, 侯俊浩, 刘亚威, 等. 分布式协同控制方法及在电力系统中的应用综述[J]. 电工技术学报, 2021, 36(19): 4035-4049.
YANG J, HOU J H, LIU Y W, et al.Distributed cooperative control method and application in power system[J]. Transactions of China Electrotechnical Society, 2021, 36(19): 4035-4049.
[9] 吴忠强, 程洪强. 考虑状态受限的微电网二次电压与频率固定时间控制[J]. 电工技术学报, 2023, 38(15): 4107-4119.
WU Z Q, CHENG H Q.Fixed-time secondary voltage and frequency control for microgrid considering state-constrained[J]. Transactions of China Electrotechnical Society, 2023, 38(15): 4107-4119.
[10] SU J S, ZHANG H C, LIU H, et al.Membership-function-based secondary frequency regulation for distributed energy resources in islanded microgrids with communication delay compensation[J]. IEEE transactions on sustainable energy, 2023, 14(4): 2274-2293.
[11] HABIBI S I, SHEIKHI M A, KHALILI T, et al.Multiagent-based nonlinear generalized minimum variance control for islanded AC microgrids[J]. IEEE transactions on power systems, 2024, 39(1): 316-328.
[12] 何红玉, 范丽, 韩蓓, 等. 基于一致性协议的多微网协调控制[J]. 电网技术, 2017, 41(4): 1269-1276.
HE H Y, FAN L, HAN B, et al.A consensus protocol based control method for coordinated multi-microgrid control[J]. Power system technology, 2017, 41(4): 1269-1276.
[13] 周烨, 汪可友, 李国杰, 等. 基于多智能体一致性算法的微电网分布式分层控制策略[J]. 电力系统自动化, 2017, 41(11): 142-149.
ZHOU Y, WANG K Y, LI G J, et al.Distributed hierarchical control for microgrid based on multi-agent consensus algorithm[J]. Automation of electric power systems, 2017, 41(11): 142-149.
[14] DENG S C, CHEN L J, LU X N, et al.Distributed finite-time secondary frequency control of islanded microgrids with enhanced operational flexibility[J]. IEEE transactions on energy conversion, 2021, 36(3): 1733-1742.
[15] 李志军, 苗庆玉, 张家安. 基于虚拟领导节点改进的孤岛微电网完全分布式二次调频策略[J]. 太阳能学报, 2024, 45(5): 333-342.
LI Z J, MIAO Q Y, ZHANG J A.Fully distributed secondary frequency control strategy for island microgrids based on improved virtual leader node[J]. Acta energiae solaris sinica, 2024, 45(5): 333-342.
[16] LIU S C, WANG X Y, LIU P X.Impact of communication delays on secondary frequency control in an islanded microgrid[J]. IEEE transactions on industrial electronics, 2015, 62(4): 2021-2031.
[17] 蔡鹏程, 文传博. 基于比率一致性算法的孤岛微电网分布式二次频率控制[J]. 太阳能学报, 2020, 41(10): 74-81.
CAI P C, WEN C B.Secondary frequency control of islanded microgrids based on ratio consensue algorithm[J]. Acta energiae solaris sinica, 2020, 41(10): 74-81.
[18] GUO Y F, ZHANG D R, LI Z C, et al.Overviews on the applications of the Kuramoto model in modern power system analysis[J]. International journal of electrical power & energy systems, 2021, 129: 106804.
[19] KURAMOTO Y.Self-entrainment of a population of coupled non-linear oscillators[J]. Proceedings of the international symposium on mathematical problems in theoretical physics, 1975, 39: 420-422.
[20] DÖRFLER F, BULLO F. Synchronization and transient stability in power networks and nonuniform Kuramoto oscillators[J]. SIAM journal on control and optimization, 2012, 50(3): 1616-1642.
[21] FLORIDUZ A, TUCCI M, RIVERSO S, et al.Approximate kron reduction methods for electrical networks with applications to plug-and-play control of AC islanded microgrids[J]. IEEE transactions on control systems technology, 2019, 27(6): 2403-2416.
[22] HUANG B N, ZHENG S, WANG R, et al.Distributed optimal control of DC microgrid considering balance of charge state[J]. IEEE transactions on energy conversion, 2022, 37(3): 2162-2174.
[23] 梅晓榕. 自动控制原理[M]. 2版. 北京: 科学出版社, 2007.
MEI X R.Principle of automatic control[M]. 2nd ed. Beijing: Science Press, 2007.
[24] DU Y H, TU H, LUKIC S.Distributed control strategy to achieve synchronized operation of an islanded MG[J]. IEEE transactions on smart grid, 2019, 10(4): 4487-4496.
[25] 于国星, 侯睿, 汪任潇, 等. 孤岛微网分层分布式频率调节及功率优化控制[J]. 电力系统自动化, 2020, 44(7): 53-60.
YU G X, HOU R, WANG R X, et al.Hierarchical distributed frequency regulation and power optimization control for islanded microgrid[J]. Automation of electric power systems, 2020, 44(7): 53-60.
PDF(2439 KB)

Accesses

Citation

Detail

Sections
Recommended

/