STUDY ON PHOTOVOLTAIC PERFORMANCE OF GeSe THIN FILMS BASED ON DYE SURFACE MODIFICATION

Zhang Wenyi, Wu Haifeng, Han Yingjian, Duan Kaiqiang, Wang Yaoxiang, Wang Ruixiang

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (12) : 161-167.

PDF(1526 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1526 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (12) : 161-167. DOI: 10.19912/j.0254-0096.tynxb.2024-1454

STUDY ON PHOTOVOLTAIC PERFORMANCE OF GeSe THIN FILMS BASED ON DYE SURFACE MODIFICATION

  • Zhang Wenyi1, Wu Haifeng1, Han Yingjian1, Duan Kaiqiang1, Wang Yaoxiang2, Wang Ruixiang1
Author information +
History +

Abstract

To enhance the light absorption properties and PCE of GeSe thin films, this study proposes a dye-sensitization surface modification method, employing single dyes such as Rhodamine B (RB), Methylene Blue (MB), and Congo Red (CR), as well as their mixtures, to modify the GeSe thin films. Experimental results show that the light absorption capacity of all dye-modified GeSe thin films is significantly improved, with the RB+MB mixed dye demonstrating the most pronounced effect. By simulating the performance of dye-modified GeSe thin-film solar cells using Scaps-1D software, it is found that the GeSe thin film modified with MB exhibits the highest PCE, reaching 26.32 %, whereas the RB+MB modification results in a lower PCE, possibly due to excessive dye loading not being well-matched with other cell performance parameters. This study demonstrates the feasibility of dye-based modification.

Key words

thin film solar cells / light absorption performance / solar cell efficiency / GeSe absorber layer / organic dye / numerical simulation / surface modification

Cite this article

Download Citations
Zhang Wenyi, Wu Haifeng, Han Yingjian, Duan Kaiqiang, Wang Yaoxiang, Wang Ruixiang. STUDY ON PHOTOVOLTAIC PERFORMANCE OF GeSe THIN FILMS BASED ON DYE SURFACE MODIFICATION[J]. Acta Energiae Solaris Sinica. 2025, 46(12): 161-167 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1454

References

[1] 姚玉璧, 郑绍忠, 杨扬, 等. 中国太阳能资源评估及其利用效率研究进展与展望[J]. 太阳能学报, 2022, 43(10): 524-535.
YAO Y B, ZHENG S Z, YANG Y, et al.Progress and prospects on solar energy resource evaluation and utilization efficiency in China[J]. Acta energiae solaris sinica, 2022, 43(10): 524-535.
[2] SHOCKLEY W, QUEISSER H J.Detailed balance limit of efficiency of p-n junction solar cells[J]. Journal of applied physics, 1961, 32(3): 510-519.
[3] LIU S C, DAI C M, MIN Y M, et al.An antibonding valence band maximum enables defect-tolerant and stable GeSe photovoltaics[J]. Nature communications, 2021, 12: 670.
[4] SAN ESTEBAN A C M, ENRIQUEZ E P. Graphene-anthocyanin mixture as photosensitizer for dye-sensitized solar cell[J]. Solar energy, 2013, 98: 392-399.
[5] TSUBOMURA H, MATSUMURA M, NOMURA Y, et al.Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell[J]. Nature, 1976, 261(5559): 402-403.
[6] O’REGAN B, GRÄTZEL M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films[J]. Nature, 1991, 353(6346): 737-740.
[7] TIWARI S, MALL C, SOLANKI P P.Evaluation of mixed dye combination by spectral study for the application as photosensitizer in photogalvanic cells for solar energy conversion and storage[J]. Surfaces and interfaces, 2022, 29: 101688.
[8] 杨英, 潘德群, 高菁, 等. 基于p型光电极的染料敏化太阳能电池研究进展[J]. 无机化学学报, 2018, 34(4): 615-626.
YANG Y, PAN D Q, GAO J, et al.Research of dye-sensitized solar cells based on p-type photoelectrode[J]. Chinese journal of inorganic chemistry, 2018, 34(4): 615-626.
[9] MAKUŁA P, PACIA M, MACYK W. How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV-vis spectra[J]. The journal of physical chemistry letters, 2018, 9(23): 6814-6817.
[10] GONG J W, LIANG J, SUMATHY K.Review on dye-sensitized solar cells (DSSCs): fundamental concepts and novel materials[J]. Renewable and sustainable energy reviews, 2012, 16(8): 5848-5860.
[11] PRABAKARAN K, OH H, MANIVANNAN R, et al.A novel class of xanthene dyes with chemically linked UV absorber molecule and their photophysical properties[J]. Spectrochimica acta part A: molecular and biomolecular spectroscopy, 2022, 279: 121437.
[12] BERDIYOROV G R, HAMOUDI H.Electronic transport properties of a single biphenyl molecule anchored on Au(111)with sulfur, selenium, and tellurium atoms[J]. The journal of chemical physics, 2022, 156(17): 174701.
[13] 刘勇武, 杜俊霖, 吴卓鹏, 等. 单晶硅片表面微纳复合结构制备及光特性研究[J]. 太阳能学报, 2021, 42(11): 1-4.
LIU Y W, DU J L, WU Z P, et al.Preparation and optical characterization research of micro/nano-strcuctures on monocrystalline silicon wafer surface[J]. Acta energiae solaris sinica, 2021, 42(11): 1-4.
[14] LU T F, LI W, ZHANG H X.Rational design of metal-free organic D-π-A dyes in dye-sensitized solar cells: insight from density functional theory (DFT) and time-dependent DFT (TD-DFT) investigations[J]. Organic electronics, 2018, 59: 131-139.
[15] KANTCHEV E A B, NORSTEN T B, TAN M L Y, et al. Thiophene-containing pechmann dyes and related compounds: synthesis, and experimental and DFT characterisation[J]. Chemistry: a European journal, 2012, 18(2): 695-708.
[16] XUE D J, LIU S C, DAI C M, et al.GeSe thin-film solar cells fabricated by self-regulated rapid thermal sublimation[J]. Journal of the American Chemical Society, 2017, 139(2): 958-965.
[17] KATUBI K M, SHIONG N S, PAKHURUDDIN M Z, et al.Over 35% efficiency of three absorber layers of perovskite solar cells using SCAPS 1-D[J]. Optik, 2024, 297: 171579.
[18] OUSLIMANE T, ET-TAYA L, ELMAIMOUNI L, et al.Impact of absorber layer thickness, defect density, and operating temperature on the performance of MAPbI3 solar cells based on ZnO electron transporting material[J]. Heliyon, 2021, 7(3): e06379.
[19] IHALANE E H, ATOURKI L, KIROU H, et al.Numerical study of thin films CIGS bilayer solar cells using SCAPS[J]. Materials today: proceedings, 2016, 3(7): 2570-2577.
[20] 韩莹健, 吴海峰, 王丹丹, 等. 以GeSe为光吸收层的薄膜太阳电池模拟优化研究[J]. 太阳能学报, 2023, 44(9): 66-71.
HAN Y J, WU H F, WANG D D, et al.Simulation and optimization of thin-film solar cells with GeSe as absorption layer[J]. Acta energiae solaris sinica, 2023, 44(9): 66-71.
[21] OKELLO A, OWUOR B O, NAMUKOBE J, et al.Influence of the pH of anthocyanins on the efficiency of dye sensitized solar cells[J]. Heliyon, 2022, 8(7): e09921.
[22] LAW M, GREENE L E, JOHNSON J C, et al.Nanowire dye-sensitized solar cells[J]. Nature materials, 2005, 4(6): 455-459.
[23] LAW M, GREENE L E, RADENOVIC A, et al.ZnO-Al2O3 and ZnO-TiO2 core-shell nanowire dye-sensitized solar cells[J]. The journal of physical chemistry B, 2006, 110(45): 22652-22663.
[24] RAJAB F M.Effect of solvent, dye-loading time, and dye choice on the performance of dye-sensitized solar cells[J]. Journal of nanomaterials, 2016, 2016(1): 3703167.
[25] ONO T, YAMAGUCHI T, ARAKAWA H.Influence of dye adsorption solvent on the performance of a mesoporous TiO2 dye-sensitized solar cell using infrared organic dye[J]. Journal of solar energy engineering, 2010, 132(2): 021101.
PDF(1526 KB)

Accesses

Citation

Detail

Sections
Recommended

/