TRANSIENT COORDINATED CONTROL STRATEGY OF GRID FORMING-PERMANENT MAGNET SYNCHRONOUS GENERATOR CONSIDERING POWER ANGLE STABILITY AND FAULT CURRENT LIMITATION

Duan Jiandong, Chen Baoqiao, Yue Yiting, Tao Jiaxin

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (12) : 545-553.

PDF(1789 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1789 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (12) : 545-553. DOI: 10.19912/j.0254-0096.tynxb.2024-1468

TRANSIENT COORDINATED CONTROL STRATEGY OF GRID FORMING-PERMANENT MAGNET SYNCHRONOUS GENERATOR CONSIDERING POWER ANGLE STABILITY AND FAULT CURRENT LIMITATION

  • Duan Jiandong, Chen Baoqiao, Yue Yiting, Tao Jiaxin
Author information +
History +

Abstract

Based on the analysis of the power angle and current transient characteristics of the grid forming-permanent magnet synchronous generator (GFM-PMSG), this paper explains the mechanisms behind power angle instability and overcurrent, as well as their mutual influence. A transient coordinated control strategy considering power angle stability and fault current limiting is proposed. The unbalanced power compensation is constructed in the active power loop of the grid forming control to suppress the increase in the power angle, while the reactive power command is adjusted to meet the current limit target, thereby limiting overcurrent. Simulation tests of the GFM-PMSG with different transient voltage drop depths, along with comparisons to other transient control strategies, show that the proposed coordinated control strategy can effectively suppress power angle increase and wind turbine instability. Additionally, it limits the output fault current within the allowable range, ensuring the stability and safety of the GFM-PMSG.

Key words

wind turbines / grid forming control / PMSG / power angle stability / fault current limitation / transient coordinated control

Cite this article

Download Citations
Duan Jiandong, Chen Baoqiao, Yue Yiting, Tao Jiaxin. TRANSIENT COORDINATED CONTROL STRATEGY OF GRID FORMING-PERMANENT MAGNET SYNCHRONOUS GENERATOR CONSIDERING POWER ANGLE STABILITY AND FAULT CURRENT LIMITATION[J]. Acta Energiae Solaris Sinica. 2025, 46(12): 545-553 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1468

References

[1] 张智刚, 康重庆. 碳中和目标下构建新型电力系统的挑战与展望[J]. 中国电机工程学报, 2022, 42(8): 2806-2819.
ZHANG Z G, KANG C Q.Challenges and prospects for constructing the new-type power system towards a carbon neutrality future[J]. Proceedings of the CSEE, 2022, 42(8): 2806-2819.
[2] 蔡旭, 秦垚, 王晗, 等. 风电机组的自同步电压源控制研究综述[J]. 高电压技术, 2023, 49(6): 2478-2490.
CAI X, QIN Y, WANG H, et al.Review of self-synchronous voltage source control for wind turbine generator[J]. High voltage engineering, 2023, 49(6): 2478-2490.
[3] LIU J, MIURA Y, BEVRANI H, et al.Enhanced virtual synchronous generator control for parallel inverters in microgrids[J]. IEEE transactions on smart grid, 2017, 8(5): 2268-2277.
[4] 朱作滨, 孙树敏, 丁月明, 等. 基于自适应VSG控制策略永磁直驱风电系统研究[J]. 太阳能学报, 2024, 45(1): 116-124.
ZHU Z B, SUN S M, DING Y M, et al.Research on pmsg wind power system based on adaptive VSG control strategy[J]. Acta energiae solaris sinica, 2024, 45(1): 116-124.
[5] 聂永辉, 张丽丽, 张立栋, 等. 一种基于VSG的风电机组与飞轮储能协调控制方法[J]. 太阳能学报, 2021, 42(8): 387-393.
NIE Y H, ZHANG L L, ZHANG L D, et al.A VSG-based coordinated control method for wind turbine and flywheel energy storage[J]. Acta energiae solaris sinica, 2021, 42(8): 387-393.
[6] 王健维, 孟建辉, 王毅, 等. 构网型直驱风机的小信号建模及动态频率支撑策略[J]. 电力系统及其自动化学报, 2024, 36(5): 48-58.
WANG J W, MENG J H, WANG Y, et al.Small-signal modeling and dynamic frequency support strategy for permanent magnetic synchronous generator under grid-forming control[J]. Proceedings of the CSU-EPSA, 2024, 36(5): 48-58.
[7] LI Y J, YUAN X T, LI J P, et al.Novel grid-forming control of PMSG-based wind turbine for integrating weak AC grid without sacrificing maximum power point tracking[J]. IET generation, transmission & distribution, 2021, 15(10): 1613-1625.
[8] PAN D H, WANG X F, LIU F C, et al.Transient stability of voltage-source converters with grid-forming control: a design-oriented study[J]. IEEE journal of emerging and selected topics in power electronics, 2020, 8(2): 1019-1033.
[9] SHUAI Z K, SHEN C, LIU X, et al.Transient angle stability of virtual synchronous generators using Lyapunov’s direct method[J]. IEEE transactions on smart grid, 2019, 10(4): 4648-4661.
[10] 颜湘武, 蔡光, 李锐博, 等. 计及功角偏差和阻尼效应的构网型双馈风机暂态稳定性分析[J]. 中国电机工程学报, 2025, 45(7): 2616-2633.
YAN X W, CAI G, LI R B, et al.Transient stability analysis of grid-forming doubly fed induction generator with power angle deviation and damping effect[J]. Proceedings of the CSEE, 2025, 45(7): 2616-2633.
[11] GAO Z, DU W J, WANG H F.Transient stability analysis of a grid-connected type-4 wind turbine with grid-forming control during the fault[J]. International journal of electrical power & energy systems, 2024, 155: 109514.
[12] 张余余, 赵晋斌, 李芬, 等. 基于功角动态补偿的VSG故障穿越方法研究[J]. 电网技术, 2021, 45(9): 3667-3673.
ZHANG Y Y, ZHAO J B, LI F, et al.VSG fault crossing method based on dynamic compensation of power angle[J]. Power system technology, 2021, 45(9): 3667-3673.
[13] 党克, 田勇, 刘子源, 等. 串联制动电阻提高VSG的LVRT能力和功角稳定研究[J]. 太阳能学报, 2022, 43(1): 323-328.
DANG K, TIAN Y, LIU Z Y, et al.Study on improving LVRT capability and power angle stability of VSG by series braking resistor[J]. Acta energiae solaris sinica, 2022, 43(1): 323-328.
[14] XIONG X L, WU C, HU B, et al.Transient damping method for improving the synchronization stability of virtual synchronous generators[J]. IEEE transactions on power electronics, 2021, 36(7): 7820-7831.
[15] CHEN M, ZHOU D, BLAABJERG F.Enhanced transient angle stability control of grid-forming converter based on virtual synchronous generator[J]. IEEE transactions on industrial electronics, 2022, 69(9): 9133-9144.
[16] SHI K, SONG W T, XU P F, et al.Low-voltage ride-through control strategy for a virtual synchronous generator based on smooth switching[J]. IEEE access, 2017, 6: 2703-2711.
[17] 章雷其, 黄林彬, 黄伟, 等. 提高下垂控制逆变器虚拟功角暂态稳定性的控制方法[J]. 电力系统自动化, 2017, 41(12): 56-62, 99.
ZHANG L Q, HUANG L B, HUANG W, et al.Control methods for improving virtual power angle transient stability of droop-controlled inverters[J]. Automation of electric power systems, 2017, 41(12): 56-62, 99.
[18] XIN H H, HUANG L B, ZHANG L Q, et al.Synchronous instability mechanism of P-f droop-controlled voltage source converter caused by current saturation[J]. IEEE transactions on power systems, 2016, 31(6): 5206-5207.
[19] LIU C, CAI X, LI R, et al.Optimal short-circuit current control of the grid-forming converter during grid fault condition[J]. IET renewable power generation, 2021, 15(10): 2185-2194.
[20] TAUL M G, WANG X F, DAVARI P, et al.Current limiting control with enhanced dynamics of grid-forming converters during fault conditions[J]. IEEE journal of emerging and selected topics in power electronics, 2020, 8(2): 1062-1073.
[21] 王德胜, 颜湘武, 贾焦心, 等. 永磁直驱风机基于虚拟同步技术的高、低电压连续故障穿越策略[J]. 中国电机工程学报, 2022, 42(6): 2164-2175.
WANG D S, YAN X W, JIA J X, et al.High/low voltage continuous fault ride through strategy of PMSGs based on virtual synchronization technology[J]. Proceedings of the CSEE, 2022, 42(6): 2164-2175.
[22] HUANG L B, XIN H H, WANG Z, et al.Transient stability analysis and control design of droop-controlled voltage source converters considering current limitation[J]. IEEE transactions on smart grid, 2019, 10(1): 578-591.
[23] 李清辉, 葛平娟, 肖凡, 等. 基于功角与电流灵活调控的VSG故障穿越方法研究[J]. 中国电机工程学报, 2020, 40(7): 2071-2080, 2387.
LI Q H, GE P J, XIAO F, et al.Study on fault ride-through method of VSG based on power angle and current flexible regulation[J]. Proceedings of the CSEE, 2020, 40(7): 2071-2080, 2387.
[24] 中国电器工业协会. 关于发布《构网型风电机组并网技术要求和测试规程》等21项中电协团体标准公告[J]. 电器工业, 2024(11): 9-12.
CHINA ELECTRICAL EQUIPMENT INDUSTRY ASSOCIATION. Announcement on 21 standards of China electricity association, such as technical requirements and test regulations for grid-connected wind turbines[J]. China electrical equipment industry, 2024(11): 9-12.
[25] GB/T 36995—2018,风力发电机组故障电压穿越能力测试规程[S].
GB/T 36995—2018, Wind turbines—test procedure of voltage fault ride through capability[S].
PDF(1789 KB)

Accesses

Citation

Detail

Sections
Recommended

/