INFLUENCE OF CONNECTOR STIFFNESS ON DYNAMIC RESPONSE OF MULTI-FLOATING PHOTOVOLTAIC ARRAYS UNDER COMBINED ACTION OF WIND AND WAVES

Zhong Min, Lu Junyu, Lin Minghui, Zhou Zhanxue, Xu Fen

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (12) : 534-544.

PDF(1792 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1792 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (12) : 534-544. DOI: 10.19912/j.0254-0096.tynxb.2024-1520

INFLUENCE OF CONNECTOR STIFFNESS ON DYNAMIC RESPONSE OF MULTI-FLOATING PHOTOVOLTAIC ARRAYS UNDER COMBINED ACTION OF WIND AND WAVES

  • Zhong Min1,2, Lu Junyu2, Lin Minghui2, Zhou Zhanxue2, Xu Fen1
Author information +
History +

Abstract

The stability of floating photovoltaic structures is one of the critical issues constraining the development of offshore floating photovoltaic. Currently, there is a lack of research on the stability of multi-floating photovoltaic arrays, particularly regarding the influence mechanism of connector stiffness on system dynamic response under combined wind and wave action. This study explores the impact mechanism of connector stiffness on the dynamic response of multi-floating photovoltaic arrays under combined wind and wave action based on potential flow theory, utilizing AWQA numerical simulation technology. A single/double-floating-body photovoltaic power station of the pontoon-support type was selected as the research object. The equations of motion for the hinged multi-floating photovoltaic in moored and articulated linkage states were constructed. Comprehensive numerical calculations and analyses were performed on the six degrees of freedom motion of the multi-floating bodies.The effect of connector stiffness on the motion response and mooring force of the double-floating-body photovoltaic system under different wind-wave incidence angles was studied. The results indicate that as the stiffness of the floating body connection increases, the motion response decreases. Setting the connector stiffness appropriately can significantly enhance the stability of the floating photovoltaic platform, reducing motion amplitude, and the optimization reference values for stiffness are proposed.

Key words

offshore floating photovoltaic / potential flow theory / connector stiffness / combined wind and wave action / multi-floating photovoltaic array / AQWA

Cite this article

Download Citations
Zhong Min, Lu Junyu, Lin Minghui, Zhou Zhanxue, Xu Fen. INFLUENCE OF CONNECTOR STIFFNESS ON DYNAMIC RESPONSE OF MULTI-FLOATING PHOTOVOLTAIC ARRAYS UNDER COMBINED ACTION OF WIND AND WAVES[J]. Acta Energiae Solaris Sinica. 2025, 46(12): 534-544 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1520

References

[1] 胡云岩, 张瑞英, 王军. 中国太阳能光伏发电的发展现状及前景[J]. 河北科技大学学报, 2014, 35(1): 69-72.
HU Y Y, ZHANG R Y,WANG J.Development status and prospect of solar photovoltaic power generation in China[J]. Journal of Hebei University of Science and Technology, 2014, 35(1): 69-72.
[2] 耿宝磊, 唐旭, 金瑞佳. 海上浮式光伏结构及其水动力问题研究展望[J]. 海洋工程, 2024, 42(3): 190-208.
GENG B L, TANG X, JIN R J.Prospects for research on offshore floating photovoltaic structures and their hydrodynamic issues[J]. The ocean engineering, 2024, 42(3): 190-208.
[3] TRAPANI K, REDÓN SANTAFÉ M. A review of floating photovoltaic installations: 2007-2013[J]. Progress in photovoltaics: research and applications, 2015, 23(4): 524-532.
[4] 吴继亮, 梁甜, 糜文杰, 等. 水上漂浮式光伏电站的发展及应用前景分析[J]. 太阳能, 2019(12): 20-23.
WU J L, LIANG T, MI W J, et al.Development and application prospects analysis of floating PV power plants[J]. Solar energy, 2019(12): 20-23.
[5] 兰智, 梁凤芝. 海上漂浮式光伏电站中光伏组件性能影响因素分析及解决策略[J]. 太阳能, 2024(8): 29-35.
LAN Z, LIANG F Z.Analysis of factors affecting performance of pv modules in offshore floating pv power stations and solutions[J]. Solar energy, 2024(8): 29-35.
[6] 施兴华, 孙哲, 张婧. 考虑连接件刚度影响的多浮体漂浮光伏方阵运动响应分析[J]. 太阳能学报, 2023, 44(8): 301-306.
SHI X H, SUN Z, ZHANG J.Kinematic response analysis of multi-body floating photovoltaic array considering stiffness of connecting parts[J]. Acta energiae solaris sinica, 2023, 44(8): 301-306.
[7] 张景飞, 易玲, 郭攀. 海上漂浮式光伏阵列单浮体结构设计[J]. 舰船科学技术, 2023, 45(19): 104-110.
ZHANG J F, YI L, GUO P.Design and optimization of single-module structure of offshore FPV system[J]. Ship science and technology, 2023, 45(19): 104-110.
[8] 宋肖锋, 陈作钢, 肖福勤, 等. 漂浮式光伏电站方阵风载荷数值研究[J]. 太阳能学报, 2020, 41(10): 136-143.
SONG X F, CHEN Z G, XIAO F Q, et al.Numerical research on wind load of floating solar power plants[J]. Acta energiae solaris sinica, 2019, 41(10): 136-143.
[9] DING R, LIU C R, ZHANG H C, et al.Experimental investigation on characteristic change of a scale-extendable chain-type floating structure[J]. Ocean engineering, 2020, 213: 107778.
[10] ZUECK R,TAYLOR R,PALO P.Assessment of technology for mobile offshore base[C]//Proceedings of the Tenth International Offshore and Polar Engineering Conference. International Society of Offshore and Polar Engineers, 2000.
[11] DERSTINE M S, BROWN R T.A compliant connector concept for the mobile offshore base[J]. Marine structures, 2000, 13(4/5): 399-419.
[12] 徐普, 黎思亮, 宋启明, 等. 深水漂浮式光伏平台系泊结构动力响应分析[J]. 太阳能学报, 2023, 44(10):156-164.
XU P, LI S L, SONG Q M, et al.Dynamic response analysis of mooring structure for deep-water floating photovoltaic platform[J]. Acta energiae solaris sinica, 2023, 44(10): 156-164.
[13] 张正远, 王冲, 柴威, 等. 考虑连接刚度及长度影响的系泊-双浮箱水动力响应特性研究[J]. 中国舰船研究, 2025, 20(2): 235-244.
ZHANG Z Y, WANG C, CHAI W, et al.Study on hydrodynamic response characteristics of mooring-double pontoon considering the influence of connection stiffness and length[J]. Chinese journal of ship research, 2025, 20(2): 235-244.
[14] 梁利华, 刘厚文, 张松涛. 基于船舶最佳回转直径的舵型参数优化研究[J]. 船舶工程, 2013, 35(1): 61-64.
LIANG L H, LIU H W, ZHANG S T.Research of rudder parameters optimization based on ship optimal turning diameter[J]. Ship engineering, 2013, 35(1): 61-64.
[15] 肖越, 王言英. 系泊系统运动响应计算研究[J]. 中国海洋平台, 2005, (6): 37-42.
XIAO Y, WANG Y Y.The calculation and analysis for the moored system[J]. China offshore platform, 2005, (6): 37-42.
[16] 高巍, 董璐ANSYS AQWA进阶应用[M]. 北京:中国水利水电出版社, 2020: 266-267.
GAO W, DONG L, Ed. ANSYS AQWA Advanced Application[M]. Beijing: China Water Resources and Hydropower Press, 2020: 266-267.
[17] 海港水文规范:JTJ 213-1998[S]. 1998.
Port hydrological Code: JTJ213-1998[S]. 1998.
[18] 王东静. 海蛇式波能转换装置发电功率参数的数值模拟研究[D].大连理工大学, 2016.
WANG D J.Numerical simulation of power parameters of sea snake wave energy conversion device [D]. Dalian University of Technology, 2016.
[19] 陈煜. 极限海况下铰接多浮体运动及系泊力计算[D]. 武汉理工大学, 2013.
CHEN Y.Motion and mooring calculation of articulated multiple floats under extreme sea conditions[D]. Wuhan University of Technology, 2013.
[20] 王永恒, 汪学锋, 徐胜文, 等. 多模块超大型浮体中连接器刚度对其运动响应的影响[J]. 海洋工程, 2018, 36(4): 11-18.
WANG Y H, WANG X F, XU S W, et al.Influence of multi-module VLFS connector stiffness on dynamic response performance[J]. The ocean engineering, 2018, 36(4): 11-18.
[21] 丁伟, 余澜, 李润培, 等. 移动式海上基地(MOB) 连接器动力响应试验研究[J]. 海洋工程, 2005, 23(2): 11-15.
DING W, YU L, LI R P, et al.Experimental research on dynamic responses of mobile offshore base connector[J]. The ocean engineering, 2005, 23(2): 11-15.
PDF(1792 KB)

Accesses

Citation

Detail

Sections
Recommended

/