STUDY ON INFLUENCE OF WIND-INDUCED VIBRATION ON CONCENTRATING EFFICIENCY OF LARGE RECTANGULAR HELIOSTAT

Xing Guohua, Zhang Wen, Wu Yanru, Liu Yin, Miao Pengyong, Fan Tao

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (10) : 360-368.

PDF(7930 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(7930 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (10) : 360-368. DOI: 10.19912/j.0254-0096.tynxb.2024-1545

STUDY ON INFLUENCE OF WIND-INDUCED VIBRATION ON CONCENTRATING EFFICIENCY OF LARGE RECTANGULAR HELIOSTAT

  • Xing Guohua1, Zhang Wen1, Wu Yanru1, Liu Yin1, Miao Pengyong1, Fan Tao2
Author information +
History +

Abstract

Based on the theory of random sampling, a ray-tracing model for predicting the wind-induced vibration of the mirror surface and its concentrating distribution is developed. A transient multi-physics approach is employed, integrating the flow field, structure, and optics. The model takes the solar position, heliostat elevation angle, and azimuth angle as variables, and analyzes the variation in the concentrating distribution of the mirror surface under pulsating wind loads. Pulsation, time-history, and Gaussian characteristics of key physical quantities such as concentrating efficiency, net wind load, and mirror displacement are also examined. The results show that wind-induced vibrations cause the heliostat’s concentrating efficiency to decrease by 8.26% to 19.48%, with the maximum efficiency loss occurring at noon. For every 1 mm increase in mirror displacement, the concentrating efficiency loss increases by about 2.87%. As wind speed increases, the net wind pressure and mean displacement exhibit a positive correlation, while concentrating efficiency follows a negative correlation. The fluctuation patterns of net wind pressure, mean displacement, and mean concentrating efficiency display instantaneous synchronization.

Key words

solar energy / solar thermal power generation / heliostat / wind effects / ray tracing / concentrating efficiency

Cite this article

Download Citations
Xing Guohua, Zhang Wen, Wu Yanru, Liu Yin, Miao Pengyong, Fan Tao. STUDY ON INFLUENCE OF WIND-INDUCED VIBRATION ON CONCENTRATING EFFICIENCY OF LARGE RECTANGULAR HELIOSTAT[J]. Acta Energiae Solaris Sinica. 2025, 46(10): 360-368 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1545

References

[1] RIZVI A A, DANISH S N, EL-LEATHY A, et al.A review and classification of layouts and optimization techniques used in design of heliostat fields in solar central receiver systems[J]. Solar energy, 2021, 218: 296-311.
[2] BENDJEBBAS H, ABDELLAH-ELHADJ A, ABBAS M.Full-scale, wind tunnel and CFD analysis methods of wind loads on heliostats: a review[J]. Renewable and sustainable energy reviews, 2016, 54: 452-472.
[3] EMES M, JAFARI A, PFAHL A, et al.A review of static and dynamic heliostat wind loads[J]. Solar energy, 2021, 225: 60-82.
[4] 朱春燕, 李正农, 王迎春. 大规模定日镜群镜面脉动风压特性研究[J]. 太阳能学报, 2021, 42(7): 199-206.
ZHU C Y, LI Z N, WANG Y C.Study on pulsating wind pressure characteristics of large scale heliostats[J]. Acta energiae solaris sinica, 2021, 42(7): 199-206.
[5] YANG M C, ZHANG Y L, WANG Q G, et al.A coupled structural-optical analysis of a novel umbrella heliostat[J]. Solar energy, 2022, 231: 880-888.
[6] XIONG Q W, LI Z N, LUO H Y, et al.Study of probability characteristics and peak value of heliostat support column base shear[J]. Renewable energy, 2021, 168: 1058-1072.
[7] 刘镇华, 牛华伟, 李红星, 等. 基于刚性模型与气弹模型风洞试验对比的塔式定日镜风振响应研究[J]. 振动与冲击, 2022, 41(8): 134-140, 187.
LIU Z H, NIU H W, LI H X, et al.Study on wind-induced vibration response of tower heliostat based on comparison of rigid model and aeroelastic model wind tunnel test[J]. Journal of vibration and shock, 2022, 41(8): 134-140, 187.
[8] 王延忠, 陈燕燕, 臧春城. 基于流固耦合的定日镜风载作用变形分析研究[J]. 太阳能学报, 2016, 37(4): 1078-1084.
WANG Y Z, CHEN Y Y, ZANG C C.Deformation research of heliostat in wind load by fluid-structure interaction method[J]. Acta energiae solaris sinica, 2016, 37(4): 1078-1084.
[9] EMES M J, ARJOMANDI M, NATHAN G J.Effect of heliostat design wind speed on the levelised cost of electricity from concentrating solar thermal power tower plants[J]. Solar energy, 2015, 115: 441-451.
[10] BENAMMAR S, TEE K F.Structural reliability analysis of a heliostat under wind load for concentrating solar power[J]. Solar energy, 2019, 181: 43-52.
[11] LUO H Y, LI Z N, XIONG Q W.Study on wind-induced fatigue of heliostat based on artificial neural network[J]. Journal of wind engineering and industrial aerodynamics, 2021, 217: 104750.
[12] BLUME K, RÖGER M, PITZ-PAAL R. Simplified analytical model to describe wind loads and wind-induced tracking deviations of heliostats[J]. Solar energy, 2023, 256: 96-109.
[13] LI S, XU G Q, LUO X, et al.Optical performance of a solar dish concentrator/receiver system: influence of geometrical and surface properties of cavity receiver[J]. Energy, 2016, 113: 95-107.
[14] HE Y L, XIAO J, CHENG Z D, et al.A MCRT and FVM coupled simulation method for energy conversion process in parabolic trough solar collector[J]. Renewable energy, 2011, 36(3): 976-985.
[15] ASSELINEAU C A, ZAPATA J, PYE J.Integration of Monte-Carlo ray tracing with a stochastic optimisation method: application to the design of solar receiver geometry[J]. Optics express, 2015, 23(11): A437.
[16] 房淼森, 逯静, 姜奕雯. 定日镜能量传输效率建模及镜场排布设计[J]. 太阳能学报, 2021, 42(1): 112-116.
FANG M S, LU J, JIANG Y W.Heliostat energy efficincy modeling and field layout design[J]. Acta energiae solaris sinica, 2021, 42(1): 112-116.
[17] LIPPS F W, VANT-HULL L L. A cellwise method for the optimization of large central receiver systems[J]. Solar energy, 1978, 20(6): 505-516.
[18] 王心愉, 李岚, 郭明焕, 等. 方位-俯仰双轴跟踪定日镜的跟踪实践[J]. 太阳能学报, 2020, 41(11): 212-219.
WANG X Y, LI L, GUO M H, et al.Tracking practice of azimuth-elevation dual-axis tracking heliostat[J]. Acta energiae solaris sinica, 2020, 41(11): 212-219.
[19] 黄嵩, 黄铭枫, 叶何凯, 等. 定日镜结构的动力风效应和风致疲劳损伤研究[J]. 工程力学, 2017, 34(12): 120-130.
HUANG S, HUANG M F, YE H K, et al.Dynamic wind-induced vibration and fatigue damage analysis of heliostat structures[J]. Engineering mechanics, 2017, 34(12): 120-130.
[20] DAVENPORT A G.The spectrum of horizontal gustiness near the ground in high winds[J]. Quarterly journal of the royal meteorological society, 1962, 88(376): 197-198.
[21] GB 50009—2012, 建筑结构荷载规范[S].
GB 50009—2012, Load code for the design of building structures[S].
PDF(7930 KB)

Accesses

Citation

Detail

Sections
Recommended

/