RESEARCH ON A BI-LEVEL LOW-CARBON DISPATCH STRATEGY FOR POWER-CARBON COUPLING OF MULTI-MICROGRIDS AND DISTRIBUTION NETWORKS CONSIDERING COOPERATIVE GAMES

Wang Changgang, Zhang Xiangwei, Cao Yu, Liang Dong, Li Yang, Mo Jingshan

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (6) : 32-48.

PDF(4072 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(4072 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (6) : 32-48. DOI: 10.19912/j.0254-0096.tynxb.2024-1606
Special Topics of Academic Papers at the 27th Annual Meeting of the China Association for Science and Technology

RESEARCH ON A BI-LEVEL LOW-CARBON DISPATCH STRATEGY FOR POWER-CARBON COUPLING OF MULTI-MICROGRIDS AND DISTRIBUTION NETWORKS CONSIDERING COOPERATIVE GAMES

  • Wang Changgang1,2, Zhang Xiangwei2, Cao Yu1,2, Liang Dong3, Li Yang1,2, Mo Jingshan1,2
Author information +
History +

Abstract

To advance the achievement of dual carbon goals and fully utilize the low-carbon potential of the microgrid load side, this paper proposes a bi-level low-carbon dispatch strategy for the power-carbon coupling of multi-microgrid systems and distribution networks, considering cooperative game theory. Firstly, to consider the impact of energy storage charging and discharging on carbon emissions, a carbon emission model for storage systems is established, integrating carbon flow analysis into the demand response model on the load side of the microgrids. A bi-level dispatch model, considering node carbon potential, is constructed, where the upper-level model addresses optimal economic dispatch for the distribution network, and the lower-level model incorporates the interests of microgrid operators and users within integrated energy systems. A joint operation model is designed under a carbon trading mechanism based on node carbon potential, facilitating cooperation between multiple microgrid operators and an aggregator representing the interests of all microgrid users. Secondly, leveraging Nash bargaining theory, energy interactions and cooperative operations between microgrid operators and the load aggregator are achieved. After demonstrating that the Nash bargaining model can minimize operational costs, the problem is decomposed into two sub-problems and solved using the alternating direction multiplier method(ADMM), achieving optimal low-carbon economic dispatch for the microgrid coalition. Finally, the model is applied to a modified IEEE 33-node system, and results demonstrate that the proposed approach effectively reallocates carbon emission responsibilities from the source side to the load side. It also accurately reflects the dynamics of competition and cooperation among stakeholders in the carbon trading market, enhancing both the low-carbon profile and economic efficiency of the system.

Key words

multi-microgrid / energy storage / cooperative game / carbon trading / carbon emissions flow / power-carbon coupling / bi-level low-carbon dispatch

Cite this article

Download Citations
Wang Changgang, Zhang Xiangwei, Cao Yu, Liang Dong, Li Yang, Mo Jingshan. RESEARCH ON A BI-LEVEL LOW-CARBON DISPATCH STRATEGY FOR POWER-CARBON COUPLING OF MULTI-MICROGRIDS AND DISTRIBUTION NETWORKS CONSIDERING COOPERATIVE GAMES[J]. Acta Energiae Solaris Sinica. 2025, 46(6): 32-48 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1606

References

[1] 国家能源局. 做好能源转型“加减法”[EB/OL]. (2024-06-07)[2024-07-02]. http://www.nea.gov.cn/2024-06/07/c_1310777547.htm.
[2] 袁越, 苗安康, 吴涵, 等. 低碳综合能源系统研究框架与关键问题研究综述[J]. 高电压技术, 2024, 50(9): 4019-4036.
YUAN Y, MIAO A K, WU H, et al.Review of the research framework and key issues for low-carbon integrated energy system[J]. High voltage engineering, 2024, 50(9): 4019-4036.
[3] 黎博, 陈民铀, 钟海旺, 等. 高比例可再生能源新型电力系统长期规划综述[J]. 中国电机工程学报, 2023, 43(2): 555-581.
LI B, CHEN M Y, ZHONG H W, et al.A review of long-term planning of new power systems with large share of renewable energy[J]. Proceedings of the CSEE, 2023, 43(2): 555-581.
[4] 梁宁, 方茜, 徐慧慧, 等. 基于节点碳势需求响应的电力系统双层优化调度[J]. 电力系统自动化, 2024, 48(9): 44-53.
LIANG N, FANG Q, XU H H, et al.Bi-level optimal dispatching of power system based on demand response considering nodal carbon intensity[J]. Automation of electric power systems, 2024, 48(9): 44-53.
[5] 高伟凯, 何川, 刘天琪, 等. 考虑微电网联盟协调运行的用户侧共享储能多计费方式博弈定价方法[J]. 电力自动化设备, 2024, 44(9): 16-23.
GAO W K, HE C, LIU T Q, et al.Multi-package game pricing method of user-side shared energy storage considering coordinated operation of microgrid alliance[J]. Electric power automation equipment, 2024, 44(9): 16-23.
[6] 刘运鑫, 姚良忠, 赵波, 等. 考虑灵活组群的配电网-微电网群低碳经济调度方法[J]. 电力系统自动化, 2024, 48(20): 59-68.
LIU Y X, YAO L Z, ZHAO B, et al.Low carbon economic scheduling of distribution network-microgrid group considering flexible group behavior[J]. Automation of electric power systems, 2024, 48(20): 59-68.
[7] 刘畅, 刘文霞, 高雪倩, 等. 基于主从博弈的配电网-多综合能源系统协调规划[J]. 电力自动化设备, 2022, 42(6): 45-52.
LIU C, LIU W X, GAO X Q, et al.Coordinative planning of distribution network and multiple integrated energy systems based on Stackelberg game[J]. Electric power automation equipment, 2022, 42(6): 45-52.
[8] 颜湘武, 王庆澳, 卜劲勇, 等. 计及不确定性的基于主从博弈的社区微网运营商电价优化方法[J]. 太阳能学报, 2024, 45(8): 78-85.
YAN X W, WANG Q A, BU J Y, et al.Electricity price optimization method for community microgrid operators based on leader-follower game considering uncertainty[J]. Acta energiae solaris sinica, 2024, 45(8): 78-85.
[9] DOAN H T, CHO J, KIM D.Peer-to-peer energy trading in smart grid through blockchain: a double auction-based game theoretic approach[J]. IEEE access, 2021, 9: 49206-49218.
[10] 王芸芸, 马志程, 周强, 等. 兼顾公平性的多能源合作博弈优化调度[J]. 太阳能学报, 2022, 43(10): 482-492.
WANG Y Y, MA Z C, ZHOU Q, et al.Multi energy cooperative game optimal scheduling considering fairness[J]. Acta energiae solaris sinica, 2022, 43(10): 482-492.
[11] PAUDEL A, CHAUDHARI K, LONG C, et al.Peer-to-peer energy trading in a prosumer-based community microgrid: a game-theoretic model[J]. IEEE transactions on industrial electronics, 2019, 66(8): 6087-6097.
[12] 马越, 蔺红. 多代理技术下基于主从博弈的多微网系统经济优化调度[J]. 太阳能学报, 2024, 45(1): 574-582.
MA Y, LIN H.Economic optimization scheduling of multi-microgrid system based on master-slave game under multi-agent technology[J]. Acta energiae solaris sinica, 2024, 45(1): 574-582.
[13] ZHONG W F, XIE S L, XIE K, et al.Cooperative P2P energy trading in active distribution networks: an MILP-based Nash bargaining solution[J]. IEEE transactions on smart grid, 2021, 12(2): 1264-1276.
[14] 穆程刚, 丁涛, 董江彬, 等. 基于私有区块链的去中心化点对点多能源交易系统研制[J]. 中国电机工程学报, 2021, 41(3): 878-890.
MU C G, DING T, DONG J B, et al.Development of decentralized peer-to-peer multi-energy trading system based on private blockchain technology[J]. Proceedings of the CSEE, 2021, 41(3): 878-890.
[15] 陈池瑶, 苗世洪, 姚福星, 等. 基于多智能体算法的多微电网-配电网分层协同调度策略[J]. 电力系统自动化, 2023, 47(10): 57-65.
CHEN C Y, MIAO S H, YAO F X, et al.Hierarchical cooperative dispatching strategy of multi-microgrid and distribution networks based on multi-agent algorithm[J]. Automation of electric power systems, 2023, 47(10): 57-65.
[16] 祝荣, 任永峰, 孟庆天, 等. 基于合作博弈的综合能源系统电-热-气协同优化运行策略[J]. 太阳能学报, 2022, 43(4): 20-29.
ZHU R, REN Y F, MENG Q T, et al.Electricity-heat-gas cooperative optimal operation strategy of integrated energy system based on cooperative game[J]. Acta energiae solaris sinica, 2022, 43(4): 20-29.
[17] 顾欣, 王琦, 胡云龙, 等. 基于纳什议价的多微网综合能源系统分布式低碳优化运行策略[J]. 电网技术, 2022, 46(4): 1464-1482.
GU X, WANG Q, HU Y L, et al.Distributed low-carbon optimal operation strategy of multi-microgrids integrated energy system based on Nash bargaining[J]. Power system technology, 2022, 46(4): 1464-1482.
[18] 田海东, 何山, 艾纯玉, 等. 计及能源交易下基于纳什议价模型的多微网合作博弈运行优化策略[J]. 电力系统保护与控制, 2024, 52(6): 29-41.
TIAN H D, HE S, AI C Y, et al.Optimization strategy for cooperative game operation of multi-microgrids based on the Nash bargaining model considering energy trading[J]. Power system protection and control, 2024, 52(6): 29-41.
[19] 刘睿捷, 包哲静, 林振智. 考虑双层奖惩型碳交易机制的源网荷分布协同低碳经济调度[J]. 电力系统自动化, 2024, 48(9): 11-20.
LIU R J, BAO Z J, LIN Z Z.Distributed collaborative low-carbon economic dispatching of source, grid and load considering dual-layer carbon trading mechanism with reward and punishment[J]. Automation of electric power systems, 2024, 48(9): 11-20.
[20] 孙文杰, 武家辉, 张强. 基于双层博弈的配电网与多综合能源微网协调优化[J]. 电力系统保护与控制, 2024, 52(2): 26-38.
SUN W J, WU J H, ZHANG Q.Coordinated optimization of a distribution network and multi-integrated energy microgrid based on a double-layer game[J]. Power system protection and control, 2024, 52(2): 26-38.
[21] 梁宁, 缪猛, 徐慧慧, 等. 考虑绿证-碳交易机制的综合能源系统双层优化调度[J]. 太阳能学报, 2024, 45(7): 312-322.
LIANG N, MIAO M, XU H H, et al.Bi-level optimal scheduling of integrated energy system considering green certificates-carbon emission trading mechanism[J]. Acta energiae solaris sinica, 2024, 45(7): 312-322.
[22] 周天睿, 康重庆, 徐乾耀, 等. 电力系统碳排放流的计算方法初探[J]. 电力系统自动化, 2012, 36(11): 44-49.
ZHOU T R, KANG C Q, XU Q Y, et al.Preliminary investigation on a method for carbon emission flow calculation of power system[J]. Automation of electric power systems, 2012, 36(11): 44-49.
[23] 汪超群, 陈懿, 文福拴, 等. 电力系统碳排放流理论改进与完善[J]. 电网技术, 2022, 46(5): 1683-1693.
WANG C Q, CHEN Y, WEN F S, et al.Improvement and perfection of carbon emission flow theory in power systems[J]. Power system technology, 2022, 46(5): 1683-1693.
[24] 宋泽淏, 冯华, 陈晓刚, 等. 基于节点碳势的配电网分布式资源低碳调度策略[J]. 高电压技术, 2023, 49(6): 2320-2332.
SONG Z H, FENG H, CHEN X G, et al.Low-carbon scheduling strategy of distributed energy resources based on node carbon intensity for distribution networks[J]. High voltage engineering, 2023, 49(6): 2320-2332.
[25] 杨毅, 易文飞, 王晨清, 等. 基于碳流追踪的电力系统源网荷低碳经济调度[J]. 电力建设, 2023, 44(5): 108-119.
YANG Y, YI W F, WANG C Q, et al.Low-carbon and economic optimal scheduling of power system source-grid-load based on carbon flow tracing method[J]. Electric power construction, 2023, 44(5): 108-119.
PDF(4072 KB)

Accesses

Citation

Detail

Sections
Recommended

/