SCHEDULING OPTIMIZATION OF PHOTOVOLTAIC-THERMAL COUPLED COGENERATION SYSTEM UNDER SOURCE/LOAD CONFIDENCE LEVEL

Chen Si, Yang Hongxin, Wang Chong, Wang Jun, Peter D. Lund

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (11) : 352-359.

PDF(1891 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1891 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (11) : 352-359. DOI: 10.19912/j.0254-0096.tynxb.2024-1734

SCHEDULING OPTIMIZATION OF PHOTOVOLTAIC-THERMAL COUPLED COGENERATION SYSTEM UNDER SOURCE/LOAD CONFIDENCE LEVEL

  • Chen Si1, Yang Hongxin1, Wang Chong2, Wang Jun2, Peter D. Lund3
Author information +
History +

Abstract

To enhance the installation capacity of solar energy at the user side, promote the integration of solar photovoltaic and thermal energy, a combined heat and power system based on solar photovoltaic and solar thermal cooperation is proposed. By introducing the concept of energy salesmen and establishing a master-slave game theory based on energy salesmen-users-system, the thermal and electrical balance between the user side and the system side at different confidence levels is optimized with the purchase and sale prices as the decision variables. Case studies demonstrate the effectiveness of the proposed method. At a 0.9 confidence level, demand response reduces the user's electricity consumption during peak price periods by an average of 763 kWh, while increasing consumption during low price periods by 564 kWh. The gas turbine outputs a maximum of 2.2 MWh at 09:00, and the photovoltaic system reaches a peak of 2.4 MWh at 14:00. Additionally, the user's thermal demand is reduced by 31.6% at 14:00. By optimizing system-side equipment output and user-side energy consumption, the system achieves more efficient production and economic energy use, maximizing the profits of all participants.

Key words

solar photovoltaic/thermal collector / combined heat and power / building integrated energy system / master-slave game / confidence level / pricing mechanism of product

Cite this article

Download Citations
Chen Si, Yang Hongxin, Wang Chong, Wang Jun, Peter D. Lund. SCHEDULING OPTIMIZATION OF PHOTOVOLTAIC-THERMAL COUPLED COGENERATION SYSTEM UNDER SOURCE/LOAD CONFIDENCE LEVEL[J]. Acta Energiae Solaris Sinica. 2024, 45(11): 352-359 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1734

References

[1] 华惠莲, 王军, 陈玉柱, 等. 天然气冷热电联供系统热经济优化研究[J]. 热能动力工程, 2023, 38(2): 26-32.
HUA H L, WANG J, CHEN Y Z, et al.Thermal-economic optimization of natural gas combined cooling heating and power system[J]. Journal of engineering for thermal energy and power, 2023, 38(2): 26-32.
[2] 王永真, 康利改, 张靖, 等. 综合能源系统的发展历程、典型形态及未来趋势[J]. 太阳能学报, 2021, 42(8): 84-95.
WANG Y Z, KANG L G, ZHANG J, et, al. Development history, typical form and future trend of integrated energy system[J]. Acta energiae solaris sinica, 2021, 42(8): 84-95.
[3] 潘华, 梁作放, 肖雨涵, 等. 多场景下区域综合能源系统的优化运行[J]. 太阳能学报, 2021, 42(1): 484-492.
PAN H, LIANG Z F, XIAO Y H, et, al. Optimal operation of regional integrated energy system under multiple scenes[J]. Acta energiae solaris sinica, 2021, 42(1): 484-492.
[4] 杨晓辉, 邓叶恒, 王晓鹏, 等. 基于碳交易-绿色证书联合交易机制的含CHP-CCS-P2G耦合的区域综合能源系统低碳经济调度[J]. 太阳能学报, 2024, 45(6): 244-254.
YANG X H, DENG Y H, WANG X P, et al.Low-carbon economic dispatching of regional integrated energy system with CHP-CCS-P2G coupling based on carbon trade-green certificate joint trading mechanism[J]. Acta energiae solaris sinica, 2024, 45(6): 244-254.
[5] 黄治军. 多种可再生能源渗透场景下的热电联产系统优化[J]. 热能动力工程, 2023, 38(4): 121-130.
HUANG Z J.Optimization of cogeneration system under multiple scenarios of renewable energy penetration[J]. Journal of engineering for thermal energy and power, 2023, 38(4):121-130.
[6] CHEN Y Z, XU J Z, WANG J, et al.Optimization of a weather-based energy system for high cooling and low heating conditions using different types of water-cooled chiller[J]. Energy, 2022, 252: 124094.
[7] CHEN Y Z, LI X X, HUA H L, et al.Exergo-environmental cost optimization of a solar-based cooling and heating system considering equivalent emissions of life-cycle chain[J]. Energy conversion and management, 2022, 258: 115534.
[8] CHEN Y Z, XU J Z, WANG J, et al.Configuration optimization and selection of a photovoltaic-gas integrated energy system considering renewable energy penetration in power grid[J]. Energy conversion and management, 2022, 254: 115260.
[9] REN H B, WU Q, LI Q F, et al.Optimal design and management of distributed energy network considering both efficiency and fairness[J]. Energy, 2020, 213: 118813.
[10] JING R, WANG M, LIANG H, et al.Multi-objective optimization of a neighborhood-level urban energy network: considering game-theory inspired multi-benefit allocation constraints[J]. Applied energy, 2018, 231: 534-548.
[11] WU Q, REN H B, GAO W J, et al.Profit allocation analysis among the distributed energy network participants based on game-theory[J]. Energy, 2017, 118: 783-794.
[12] WU Q, REN H B, GAO W J, et al.Benefit allocation for distributed energy network participants applying game theory based solutions[J]. Energy, 2017, 119: 384-391.
[13] 李昌杰, 陈玉柱, 秦方, 等. 基于主从博弈的燃气-太阳能-地热能耦合系统运行优化[J]. 太阳能学报, 2024, 45(7): 333-339.
LI C J, CHEN Y Z, QIN F, et al.Optimal operation of coupled gas-solar-geothermal energy system based on stackelberg game[J]. Acta energiae solaris sinica, 2024, 45(7): 333-339.
[14] 朱霄珣, 刘占田, 薛劲飞, 等. 计及柔性负荷参与的综合能源系统优化调度[J]. 太阳能学报, 2023, 44(9): 29-38.
ZHU X X, LIU Z T, XUE J F, et al.Optimal scheduling of integrated energy system with flexible load participation[J]. Acta energiae solaris sinica, 2023, 44(9): 29-38.
[15] 饶志, 杨再敏, 王雨, 等. 基于源荷匹配的区域大型复合电站优化配置方法[J]. 太阳能学报, 2024, 45(8): 190-199.
RAO Z, YANG Z M, WANG Y, et al.Optimal configuration of regional large composite power station based on source-load matching[J]. Acta energiae solaris sinica, 2024, 45(8): 190-199.
[16] 安源, 苏瑞, 郑申印, 等. 计及碳交易和源-荷侧资源的综合能源系统低碳经济优化[J]. 太阳能学报, 2023, 44(11): 547-555.
AN Y, SU R, ZHENG S Y, et al.Low carbon economic optimization of integrated energy system considering carbon trading and source-load side resources[J]. Acta energiae solaris sinica, 2023, 44(11): 547-555.
[17] LI C X, SPATARU S V, ZHANG K J, et al.A multi-state dynamic thermal model for accurate photovoltaic cell temperature estimation[J]. IEEE journal of photovoltaics, 2020, 10(5): 1465-1473.
[18] SHAHZAD NAZIR M, SHAHSAVAR A, AFRAND M, et al.A comprehensive review of parabolic trough solar collectors equipped with turbulators and numerical evaluation of hydrothermal performance of a novel model[J]. Sustainable energy technologies and assessments, 2021, 45: 101103.
[19] FENG L J, DAI X Y, MO J R, et al.Comparison of capacity design modes and operation strategies and calculation of thermodynamic boundaries of energy-saving for CCHP systems in different energy supply scenarios[J]. Energy conversion and management, 2019, 188: 296-309.
[20] FENG L J, JIANG X Z, CHEN J, et al.Time-based category of combined cooling, heating and power (CCHP) users and energy matching regimes[J]. Applied thermal engineering, 2017, 127: 266-274.
[21] CHEN Y Z, HUA H L, XU J Z, et al.Energy, environmental-based cost, and solar share comparisons of a solar driven cooling and heating system with different types of building[J]. Applied thermal engineering, 2022, 211: 118435.
[22] 邓盛盛, 陈皓勇, 肖东亮, 等. 考虑碳市场交易的寡头电力市场均衡分析[J]. 南方电网技术, 2024, 18(1): 143-152.
DENG S S, CHEN H Y, XIAO D L, et al.Equilibrium analysis of oligopoly electricity market considering carbon market trading[J]. Southern power system technology, 2024, 18(1): 143-152.
[23] 周长城, 马溪原, 郭晓斌, 等. 基于主从博弈的工业园区综合能源系统互动优化运行方法[J]. 电力系统自动化, 2019, 43(7): 74-80.
ZHOU C C, MA X Y, GUO X B, et al.Leader-fellower game based optimized operation method for interaction of integrated energy system in industrial park[J]. Automation of electric power systems, 2019, 43(7): 74-80.
[24] 王海洋. 基于博弈论的多主体综合能源系统优化方法[D]. 济南: 山东大学, 2021.
WANG H Y.Optimization method of multi-agent comprehensive energy system based on game theory[D]. Ji’nan: Shandong University, 2021.
[25] 王海洋, 李珂, 张承慧, 等. 基于主从博弈的社区综合能源系统分布式协同优化运行策略[J]. 中国电机工程学报, 2020, 40(17): 5435-5445.
WANG H Y, LI K, ZHANG C H, et al.Distributed coordinative optimal operation of community integrated energy system based on stackelberg game[J]. Proceedings of the CSEE, 2020, 40(17): 5435-5445.
[26] WEI F, JING Z X, WU P Z, et al.A Stackelberg game approach for multiple energies trading in integrated energy systems[J]. Applied energy, 2017, 200: 315-329.
[27] WANG J J, QI X L, REN F K, et al.Optimal design of hybrid combined cooling, heating and power systems considering the uncertainties of load demands and renewable energy sources[J]. Journal of cleaner production, 2021, 281: 125357.
[28] 林文智, 杨苹, 陈芯羽, 等. 计及需求响应不确定性的园区综合能源系统日前经济优化调度[J]. 电力建设, 2021, 42(12): 9-20.
LIN W Z, YANG P, CHEN X C, et al.Day-ahead optmal economic dispatch of park integrated energy system considering uncertainty of demand response[J]. Electric power construction, 2021, 42(12): 9-20.
[29] 任福康. 天然气-太阳能-地热互补的分布式供能系统优化研究[D]. 北京: 华北电力大学, 2020.
REN F K.Study on optimization of distributed energy supply system with natural gas-solar energy-geothermal complementarity[D]. Beijing: North China Electric Power University, 2020.
PDF(1891 KB)

Accesses

Citation

Detail

Sections
Recommended

/