HYBRID MODEL TEST AND RESPONSE CHARACTERISTICS ANALYSIS OF FLOATING WIND TURBINES

He Xianzhao, Li Tao, Chen Qian, Wang Ruiliang, Zhang Tianyu

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (4) : 595-603.

PDF(4673 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(4673 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (4) : 595-603. DOI: 10.19912/j.0254-0096.tynxb.2024-1783

HYBRID MODEL TEST AND RESPONSE CHARACTERISTICS ANALYSIS OF FLOATING WIND TURBINES

  • He Xianzhao1,2, Li Tao1,2, Chen Qian1,2, Wang Ruiliang1,2, Zhang Tianyu1,2
Author information +
History +

Abstract

Accurately simulating the rotor dynamic thrust characteristics in floating wind power model tests presents a significant challenge. This study focuses on a large floating wind turbine and introduces a novel floating wind power model test method utilizing drone control. By employing a micro fan array, precise control over fan speed and corresponding aerodynamic loads is achieved. The method is applied to simulate and test typical operational conditions, including rated, extreme, and transient shutdown scenarios across various wind directions. The results demonstrate that the drone control-based model test method effectively captures the dynamic thrust characteristics at the turbine head and accurately replicates transient shutdown behaviors. The structural dynamic responses observed during testing are in good agreement with simulation predictions, confirming the reliability and reference value of the test data. Compared to traditional three-blade simulation approaches, this method offers superior accuracy in representing thrust dynamics and holds promising potential for future applications in floating wind turbine research and development.

Key words

offshore wind turbines / dynamic response / model test / drone control / comparative analysis

Cite this article

Download Citations
He Xianzhao, Li Tao, Chen Qian, Wang Ruiliang, Zhang Tianyu. HYBRID MODEL TEST AND RESPONSE CHARACTERISTICS ANALYSIS OF FLOATING WIND TURBINES[J]. Acta Energiae Solaris Sinica. 2025, 46(4): 595-603 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1783

References

[1] 全球风能理事会. 2023年全球上风电报告[R].
Global Wind Energy Council. Global offshore wind report2023[R].
[2] 郭子伟, 孟龙, 赵永生, 等. 海上浮式风机水池模型试验方法及其研究进展[J]. 中国海洋平台, 2016, 31(6): 1-8, 14.
GUO Z W, MENG L, ZHAO Y S, et al.Development and method of the offshore floating wind turbines wave-tank model test[J]. China offshore platform, 2016, 31(6): 1-8, 14.
[3] 李昌, 王渊博, 蒋明真, 等. 不同风况下半潜漂浮式风力机动力学响应分析[J]. 太阳能学报, 2023, 44(4): 85-91.
LI C, WANG Y B, JIANG M Z, et al.Dynamic response analysis of semi-submersible floating wind turbine under different wind conditions[J]. Acta energiae solaris sinica, 2023, 44(4): 85-91.
[4] 何鸿圣, 李春, 王博, 等. 2种海上风力机漂浮式风电场平台动态响应对比[J]. 太阳能学报, 2023, 44(4): 1-8.
HE H S, LI C, WANG B, et al.Comparison of dynamic response of two floating wind farm platforms for offshore wind turbines[J]. Acta energiae solaris sinica, 2023, 44(4): 1-8.
[5] MARTIN H R.Development of a scale model wind turbine for testing of offshore floating wind turbine systems[D]. Orono: University of Maine, 2011.
[6] DUAN F, HU Z Q, NIEDZWECKI J M.Model test investigation of a spar floating wind turbine[J]. Marine structures, 2016, 49: 76-96.
[7] PASSON P, KÜHN M, BUTTERFIELD S, et al. OC3: benchmark exercise of aero-elastic offshore wind turbine codes[J]. Journal of physics: conference series, 2007, 75: 012071.
[8] ROBERTSON A, JONKMAN J, VORPAHL F, et al.Offshore code comparison collaboration continuation within IEA wind task 30: phase II results regarding a floating semisubmersible wind system[C]//ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering. San Francisco, California, USA, 2014
[9] AZCONA J, BOUCHOTROUCH F, GONZÁLEZ M, et al. Aerodynamic thrust modelling in wave tank tests of offshore floating wind turbines using a ducted fan[J]. Journal of physics: conference series, 2014, 524: 012089.
[10] 刘浩学, 温斌荣, 魏汉迪, 等. 海上浮式风机混合模型试验系统开发[J]. 实验室研究与探索, 2020, 39(5): 71-76.
LIU H X, WEN B R, WEI H D, et al.Development of hybrid model test system for floating wind turbines[J]. Research and exploration in laboratory, 2020, 39(5): 71-76.
[11] 李玉刚, 任年鑫, 莫仁杰, 等. 风浪联合作用下海上风机动力响应模型试验设计方法[J]. 实验室科学, 2016, 19(6): 1-4, 7.
LI Y G, REN N X, MO R J, et al.Model test design method of dynamic response for offshore wind turbines under the combined action of wind and wave[J]. Laboratory science, 2016, 19(6): 1-4, 7.
[12] 梁泽浩, 田新亮, 温斌荣, 等. 面向浮式风力机组混合模型试验的多通道载荷复现器设计与性能测试[J]. 太阳能学报, 2023, 44(6): 413-419.
LIANG Z H, TIAN X L, WEN B R, et al.Multi-channel aerodynamic load simulator for floating wind turbine hybrid model tests: development and test[J]. Acta energiae solaris sinica, 2023, 44(6): 413-419.
[13] FOWLER M J, KIMBALL R W, THOMAS D A, et al.Design and testing of scale model wind turbines for use in wind/wave basin model tests of floating offshore wind turbines[C]//ASME 2013 32nd International Conference On Ocean, Offshore And Arctic Engineering. Nantes, France, 2013.
PDF(4673 KB)

Accesses

Citation

Detail

Sections
Recommended

/