PARAMETER IDENTIFICATION FOR PERMANENT MAGNET SYNCHRONOUS MOTOR BASED ON IMPROVED SOCIAL NETWORK SEARCH ALGORITHM

Tian De, Wu Xiaoxuan, Su Yi, Meng Huiwen

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (4) : 604-611.

PDF(1156 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1156 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (4) : 604-611. DOI: 10.19912/j.0254-0096.tynxb.2024-1852

PARAMETER IDENTIFICATION FOR PERMANENT MAGNET SYNCHRONOUS MOTOR BASED ON IMPROVED SOCIAL NETWORK SEARCH ALGORITHM

  • Tian De, Wu Xiaoxuan, Su Yi, Meng Huiwen
Author information +
History +

Abstract

Aiming at the shortcomings of traditional PMSM parameter identification methods, including slow identification speed, low precision, and proneness to fall into local optimality, a PMSM parameter identification approach based on the improved social network search (ISNS) algorithm in this paper is proposed. The ISNS algorithm incorporate the Tent chaotic initialization strategy, Levy flight strategy, golden sine strategy, and Gaussian mutation strategy in the fundamental SNS algorithm. With reference to the test function, the superiority of the proposed ISNS algorithm is validated.The simulation results show that compared with other optimization algorithms, the proposed PMSM parameter identification method based on ISNS algorithm is capable of obtaining more accurate, high-quality, and stable identification outcomes.The identification accuracy of stator resistance, d-axis inductance, q-axis inductance, and flux linkage of PMSM is 99.996%, 99.934%, 99.947% and 99.962%, respectively.

Key words

permanent magnet synchronous motor / parameter identification / social network search algorithm / improved social network search algorithm / online identification / wind power generation

Cite this article

Download Citations
Tian De, Wu Xiaoxuan, Su Yi, Meng Huiwen. PARAMETER IDENTIFICATION FOR PERMANENT MAGNET SYNCHRONOUS MOTOR BASED ON IMPROVED SOCIAL NETWORK SEARCH ALGORITHM[J]. Acta Energiae Solaris Sinica. 2025, 46(4): 604-611 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1852

References

[1] MERCORELLI P.Identification of parameters and states in pmsms[J]. Electronics,2023,12(12).
[2] 李鹏飞, 严欣平, 苏盈盈, 等. 基于永磁同步电机逆系统解耦模糊滑模控制[J]. 太阳能学报, 2011, 32(4): 565-570.
LI P F, YAN X P, SU Y Y, et al.The decoupling control of permanent magnet synchronous motor based on invert system and fuzzy sliding mode[J]. Acta energiae solaris sinica, 2011, 32(4): 565-570.
[3] ZHANG Y F,WU Z H,YAN Q,et al.An improved model-free current predictive control of permanent magnet synchronous motor based on high-gain disturbance observer[J]. Energies, 2022, 16(1): 141-141.
[4] 高森, 王康, 姜宏昌, 等. 基于改进粒子群算法的永磁同步电机参数辨识[J]. 微特电机, 2023, 51(11): 65-70.
GAO S,WANG K,JIANG H C,et al.Parameter identification of permanent magnet synchronous motor based on improved particle swarm optimization algorithm[J]. Small & special electrical machines, 2023,51(11): 65-70.
[5] 刘少博, 王高林, 王奇维, 等. 永磁同步电机参数在线辨识方法研究综述[J]. 东北电力大学学报, 2024, 44(3): 1-10.
LIU S B, WANG G L, WANG Q W, et al.Review on online identification methods of permanent magnet synchronous motor parameters[J]. Journal of Northeast Electric Power University, 2024, 44(3): 1-10.
[6] QI X, SHENG C Y, GUO Y B, et al.Parameter identification of a permanent magnet synchronous motor based on the model reference adaptive system with improved active disturbance rejection control adaptive law[J]. Applied sciences, 2023, 13(21): 12076.
[7] 石建飞, 戈宝军, 吕艳玲, 等. 永磁同步电机在线参数辨识方法研究[J]. 电机与控制学报, 2018, 22(3): 17-24.
SHI J F, GE B J, LYU Y L, et al.Research of parameter identification of permanent magnet synchronous motor on line[J]. Electric machines and control, 2018, 22(3): 17-24.
[8] LYU S X.Online parameter identification of permanent magnet synchronous motor based on recursive least squares algorithm[J]. Journal of physics: conference series, 2023, 2564(1): 012045.
[9] 吴洪涛, 何宗卿, 朱亮, 等. 基于最小二乘法的永磁同步电机参数辨识[J]. 电子技术, 2021, 50(2): 48-49.
WU H T, HE Z Q, ZHU L, et al.Parameter identification of permanent magnet synchronous motor based on least squares[J]. Electronic technology, 2021, 50(2): 48-49.
[10] 王庆龙, 杨淑英, 谢震, 等. 基于定子电流的双馈电机变结构MRAS转速观测[J]. 太阳能学报, 2014, 35(7): 1244-1249.
WANG Q L, YANG S Y, XIE Z, et al.Stator current based variable-structure MRAS speed observers for doubly-fed induction generator[J]. Acta energiae solaris sinica, 2014, 35(7): 1244-1249.
[11] 李垣江, 董鑫, 魏海峰, 等. 基于改进模型参考自适应系统的永磁同步电机参数辨识[J]. 控制理论与应用, 2020, 37(9): 1983-1988.
LI Y J, DONG X, WEI H F, et al.Parameter identification method of permanent magnet synchronous motor based on improved model reference adaptive system[J]. Control theory & applications, 2020, 37(9): 1983-1988.
[12] 李洪凤, 徐浩博, 徐越. 扩展卡尔曼滤波参数辨识下永磁同步电机模型预测转矩控制[J]. 电机与控制学报, 2023, 27(9): 19-30.
LI H F, XU H B, XU Y.Model prediction torque control of PMSM based on extended Kalman filter parameter identification[J]. Electric machines and control, 2023, 27(9): 19-30.
[13] 张晓虎, 赵吉文, 王立俊, 等. 基于自适应互联扩展卡尔曼观测器的永磁同步直线电机高精度抗干扰在线多参数辨识[J]. 中国电机工程学报, 2022, 42(12): 4571-4580.
ZHANG X H, ZHAO J W, WANG L J, et al.High precision anti-interference online multiparameter estimation of PMSLM with adaptive interconnected extend Kalman observer[J]. Proceedings of the CSEE, 2022, 42(12): 4571-4580.
[14] YANG Y P, ZHANG G Y, ZHOU Y, et al.A review of permanent magnet synchronous motor parameter identification research[C]//IECON 2023- 49th Annual Conference of the IEEE Industrial Electronics Society. Singapore, Singapore, 2023: 1-7.
[15] 沈艳霞, 靳保龙. 永磁同步电机模糊遗忘因子最小二乘法参数辨识[J]. 系统仿真学报, 2018, 30(9): 3404-3410, 3419.
SHEN Y X, JIN B L.Permanent magnet synchronous motor fuzzy forgetting factor recursive least squares parameter identification[J]. Journal of system simulation, 2018, 30(9): 3404-3410, 3419.
[16] 张洪东, 李宏, 郑勇. 基于递推最小二乘法的永磁同步电动机参数辨识[J]. 微特电机, 2011, 39(11): 14-16.
ZHANG H D, LI H, ZHENG Y.Parameters identification of PMSM based on recursive least squares[J]. Small & special electrical machines, 2011, 39(11): 14-16.
[17] 汪琦, 王爽, 付俊永, 等. 基于模型参考自适应参数辨识的永磁同步电机电流预测控制[J]. 电机与控制应用, 2017, 44(7): 48-53.
WANG Q, WANG S, FU J Y, et al.Predictive current control for permanent magnet synchronous motor based on model reference adaptive system parameter identification[J]. Electric machines & control application, 2017, 44(7): 48-53.
[18] 金宁治, 周凯, Herbert Ho-Ching IU. 带有自适应参数辨识的IPMSM MTPA控制[J]. 电机与控制学报, 2020, 24(7): 90-101.
JIN N Z, ZHOU K, IU H.Model reference adaptive identification based MTPA control method for interior PM synchronous motor[J]. Electric machines and control, 2020, 24(7): 90-101.
[19] 张毅伟, 黄旭珍, 徐济安. 基于混合自适应扩展卡尔曼滤波的永磁同步直线电机等效机械参数辨识策略[J]. 中国电机工程学报, 2024, 44(3): 1162-1173.
ZHANG Y W, HUANG X Z, XU J A.Equivalent mechanical parameter identification of permanent magnet synchronous linear motor based on hybrid adaptive extended Kalman filter[J]. Proceedings of the CSEE, 2024, 44(3): 1162-1173.
[20] 陈峥, 李镇伍, 申江卫, 等. 基于改进WOA优化BP神经网络的车用PMSM参数辨识[J]. 电机与控制应用, 2022, 49(5): 27-36.
CHEN Z,LI Z W,SHEN J W,et al.Parameter identification of vehicle PMSM based on improved WOA optimized BP neural network[J]. Electric machines & control application, 2022, 49(5): 27-36.
[21] 何静, 唐润忠, 张昌凡, 等. 基于Adaline神经网络参数辨识的PMSM鲁棒电流预测控制[J]. 电机与控制学报, 2023, 27(4): 127-139.
HE J,TANG R Z,ZHANG C F,et al.Robust current predictive control of PMSM based on Adaline neural network parameter identification[J]. Electric machines and control, 2023, 27(4): 127-139.
[22] 陈锦宝, 李杰, 王艳, 等. 融合Levy飞行的教与学优化算法的PMSM参数辨识[J]. 系统仿真学报, 2018, 30(4): 1456-1463.
CHEN J B, LI J, WANG Y, et al.PMSM parameter identification using teaching-learning-based optimization with levy flight[J]. Journal of system simulation, 2018, 30(4): 1456-1463.
[23] 张铸, 姜金美, 张小平. 改进灰狼优化算法的永磁同步电机多参数辨识[J]. 电机与控制学报, 2022, 26(10): 119-129.
ZHANG Z, JIANG J M, ZHANG X P, et al.Multi-parameter identification of permanent magnet synchronous motor based on improved grey wolf optimization algorithm[J]. Electric machines and control,2022, 26(10): 119-129.
[24] 吴定会, 黄旭, 全亚威, 等. 基于变异珊瑚礁算法的永磁同步电机参数辨识[J]. 系统仿真学报, 2018, 30(8): 3024-3032.
WU D H, HUANG X, QUAN Y W, et al.Parameter identification of permanent magnet synchronous motor based on mutation coral reef algorithm[J]. Journal of system simulation, 2018, 30(8): 3024-3032.
[25] 刘细平, 胡卫平, 邹永玲, 等. 改进粒子群算法的永磁同步电机多参数辨识[J]. 电机与控制学报, 2020, 24(7): 112-120.
LIU X P, HU W P, ZOU Y L, et al.Multi-parameter identification of permanent magnet synchronous motor based on improved particle swarm optimization[J]. Electric machines and control, 2020, 24(7): 112-120.
[26] 林国汉, 章兢, 刘朝华, 等. 改进综合学习粒子群算法的PMSM参数辨识[J]. 电机与控制学报, 2015, 19(1): 51-57.
LIN G H, ZHANG J, LIU Z H, et al.Parameter identification of PMSM using improved comprehensive learning particle swarm optimization[J]. Electric machines and control, 2015, 19(1): 51-57.
[27] YANG Z J, WANG Q, ZONG X J, et al.Intrusion detection method based on improved social network search algorithm[J]. Computers & security, 2024, 140: 103781.
[28] LIU M M,ZHANG Y Y,GUO J F,et al.An adaptive lion swarm optimization algorithm incorporating tent chaotic search and information entropy[J]. International journal of computational intelligence systems, 2023,16:39.
[29] EHSAN B, JALALEDDIN S M, MAHDI P, et al.Improving the generalisation ability of neural networks using a lévy flight distribution algorithm for classification problems[J]. New generation computing, 2023, 41(2): 225-242.
[30] LI M Y, LIU Z L, SONG H X.An improved algorithm optimization algorithm based on RungeKutta and golden sine strategy[J]. Expert systems with applications, 2024, 247: 123262.
[31] SUN Y, GAO Y L.A multi-objective particle swarm optimization algorithm based on Gaussian mutation and an improved learning strategy[J]. Mathematics, 2019, 7(2): 148.
PDF(1156 KB)

Accesses

Citation

Detail

Sections
Recommended

/