MULTI-INPUT SINGLE-OUTPUT ELM-HAMMERSTEIN MODELING AND PARAMETER IDENTIFICATION FOR PEMFC SYSTEMS

Fan Yamin, Liu Ximei, Li Meihang, Wu Qingfeng, He Junqiang

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (9) : 426-436.

PDF(2033 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2033 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (9) : 426-436. DOI: 10.19912/j.0254-0096.tynxb.2024-1924

MULTI-INPUT SINGLE-OUTPUT ELM-HAMMERSTEIN MODELING AND PARAMETER IDENTIFICATION FOR PEMFC SYSTEMS

  • Fan Yamin1, Liu Ximei2, Li Meihang2, Wu Qingfeng1, He Junqiang1
Author information +
History +

Abstract

In response to the challenges associated with complex dynamic responses and inaccurate description of nonlinear relationships in proton exchange membrane fuel cell (PEMFC) modeling, this paper proposes a novel method for PEMFC modeling and parameter identification based on a multi-input single-output Hammerstein structure. Initially, an extreme learning machine (ELM) network is employed to capture the input nonlinearity within the Hammerstein model, thereby constructing a framework that precisely reflects both the dynamic and static characteristics of the PEMFC system. Subsequently, the key term separation technique is utilized to construct the identification model, from which the auxiliary model recursive least squares (AM-RLS) algorithm and the auxiliary model forgetting gradient (AM-FG) algorithm are derived for parameter identification by integrating the auxiliary model idea. Finally, by combining ElasticNet with mutual information analysis (MIA), controllable variables strongly correlated with the output power quality are screened, thereby reducing modeling complexity and improving computational efficiency. Through simulation verification using the measured data under dynamic and steady current conditions, the results indicate that the established model can accurately predict the variation trend of output voltage and exactly reflect the quality fluctuation of output power.

Key words

proton exchange membrane fuel cell (PEMFC) / system identification / prediction / ELM-Hammerstein model / auxiliary model idea

Cite this article

Download Citations
Fan Yamin, Liu Ximei, Li Meihang, Wu Qingfeng, He Junqiang. MULTI-INPUT SINGLE-OUTPUT ELM-HAMMERSTEIN MODELING AND PARAMETER IDENTIFICATION FOR PEMFC SYSTEMS[J]. Acta Energiae Solaris Sinica. 2025, 46(9): 426-436 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1924

References

[1] RISCO-BRAVO A, VARELA C, BARTELS J, et al.From green hydrogen to electricity: a review on recent advances, challenges, and opportunities on power-to-hydrogen-to-power systems[J]. Renewable and sustainable energy reviews, 2024, 189: 113930.
[2] ZHANG C Z, ZHANG Y Q, WANG L, et al.A health management review of proton exchange membrane fuel cell for electric vehicles: failure mechanisms, diagnosis techniques and mitigation measures[J]. Renewable and sustainable energy reviews, 2023, 182: 113369.
[3] LI Y H, YANG F, CHEN D F, et al.Thermal-physical modeling and parameter identification method for dynamic model with unmeasurable state in 10-kW scale proton exchange membrane fuel cell system[J]. Energy conversion and management, 2023, 276: 116580.
[4] 陈永辉, 苏建徽, 解宝, 等. 基于HHO-FA的PEMFC电堆辨识建模[J]. 太阳能学报, 2024, 45(3): 282-289.
CHEN Y H, SU J H, XIE B, et al.Identification modeling of PEMFC stack based on HHO-FA[J]. Acta energiae solaris sinica, 2024, 45(3): 282-289.
[5] TZELEPIS S, KAVADIAS K A, MARNELLOS G E, et al.A review study on proton exchange membrane fuel cell electrochemical performance focusing on anode and cathode catalyst layer modelling at macroscopic level[J]. Renewable and sustainable energy reviews, 2021, 151: 111543.
[6] SHI Y, HE W, XIE B, et al.PEMFC fault diagnosis based on an equivalent circuit and OS-ELM framework[J]. IEEE transactions on industry applications, 2023, 60(1): 1277-1287.
[7] CHEN D F, WU W L, CHANG K Y, et al.Performance degradation prediction method of PEM fuel cells using bidirectional long short-term memory neural network based on Bayesian optimization[J]. Energy, 2023, 285: 129469.
[8] 袁铁江, 郭泽林, 胡辰康. 基于LSTM-MPC的PEMFC运行状态建模与容错控制[J]. 中国电机工程学报, 2024, 44(10): 3927-3937.
YUAN T J, GUO Z L, HU C K.Operating states modeling and fault-tolerant control of PEMFC based on LSTM-MPC[J]. Proceedings of the CSEE, 2024, 44(10): 3927-3937.
[9] CHAVAN S L, TALANGE D B.System identification black box approach for modeling performance of PEM fuel cell[J]. Journal of energy storage, 2018, 18: 327-332.
[10] ZHANG B, LIN F, ZHANG C Z, et al.Design and implementation of model predictive control for an open-cathode fuel cell thermal management system[J]. Renewable energy, 2020, 154: 1014-1024.
[11] ZHANG Q, WANG H W, LIU C L, et al.Establishment and identification of MIMO fractional Hammerstein model with colored noise for PEMFC system[J]. Chaos, solitons & fractals, 2024, 180: 114502.
[12] LYU L, SUN W, PAN J.Two-stage and three-stage recursive gradient identification of Hammerstein nonlinear systems based on the key term separation[J]. International journal of robust and nonlinear control, 2024, 34(2): 829-848.
[13] FAN Y M, LIU X M.Data filtering-based multi-innovation forgetting gradient algorithms for input nonlinear FIR-MA systems with piecewise-linear characteristics[J]. Journal of the Franklin Institute, 2021, 358(18): 9818-9840.
[14] ZHANG Q, WANG H W, LIU C L.MILM hybrid identification method of fractional order neural-fuzzy Hammerstein model[J]. Nonlinear dynamics, 2022, 108(3): 2337-2351.
[15] KAYEDPOUR N, SAMANI A E, DE KOONING J D M, et al. Model predictive control with a cascaded Hammerstein neural network of a wind turbine providing frequency containment reserve[J]. IEEE transactions on energy conversion, 2022, 37(1): 198-209.
[16] WANG D Q.Key-term separation based hierarchical gradient approach for NN based Hammerstein battery model[J]. Applied mathematics letters, 2024, 157: 109207.
[17] TANG Y G, BU C N, LIU M M, et al.Application of ELM-Hammerstein model to the identification of solid oxide fuel cells[J]. Neural computing and applications, 2018, 29(2): 401-411.
[18] XU K K, YANG H D, ZHU C J.A novel extreme learning machine-based Hammerstein-Wiener model for complex nonlinear industrial processes[J]. Neurocomputing, 2019, 358: 246-254.
[19] LIU Z P, CHEN J, FAN Q H, et al.A key-term separation based least square method for Hammerstein SOC estimation model[J]. Sustainable energy, grids and networks, 2023, 35: 101089.
[20] DING F, MA H, PAN J, et al.Hierarchical gradient- and least squares-based iterative algorithms for input nonlinear output-error systems using the key term separation[J]. Journal of the Franklin Institute, 2021, 358(9): 5113-5135.
[21] GOURIVEAU R, HILAIRET M, HISSEL D, et al.IEEE PHM 2014 data challenge: outline experiments scoring of results winners[C]//IEEE Conference. Prognostics Health Manage. Belfort, France, 2014.
[22] 于广宇, 董学平, 王祥民, 等. 弹性网下基于LSTM的分解炉出口温度预测[J]. 系统仿真学报, 2021, 33(5): 1078-1085.
YU G Y, DONG X P, WANG X M, et al.Decomposition furnace outlet temperature prediction based on ElasticNet and LSTM[J]. Journal of system simulation, 2021, 33(5): 1078-1085.
[23] ZOU H, HASTIE T.Regularization and variable selection via the elastic net[J]. Journal of the Royal Statistical Society series B: statistical methodology, 2005, 67(2): 301-320.
[24] HAN F, WANG T Y, LING Q H.An improved feature selection method based on angle-guided multi-objective PSO and feature-label mutual information[J]. Applied intelligence, 2023, 53(3): 3545-3562.
PDF(2033 KB)

Accesses

Citation

Detail

Sections
Recommended

/