PERFORMANCE ANALYSIS AND COOPERATIVE CONTROL STRATEGY OF SOFC/MGT HYBRID POWER SYSTEM

Huo Haibo, Zhu Hongxiang, Xu Sheng, Cao Zhengliang, Xu Jingxiang, Li Xi

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (6) : 79-88.

PDF(2140 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2140 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (6) : 79-88. DOI: 10.19912/j.0254-0096.tynxb.2024-2025
Special Topics of Academic Papers at the 27th Annual Meeting of the China Association for Science and Technology

PERFORMANCE ANALYSIS AND COOPERATIVE CONTROL STRATEGY OF SOFC/MGT HYBRID POWER SYSTEM

  • Huo Haibo1, Zhu Hongxiang1, Xu Sheng1, Cao Zhengliang2, Xu Jingxiang1, Li Xi3
Author information +
History +

Abstract

A novel methane-fueled solid oxide fuel cell/micro gas turbine (SOFC/MGT) hybrid system is proposed to enhance thermoelectric efficiency by utilizing high-temperature waste heat from the SOFC. To meet inlet temperature requirements and maximize waste heat utilization, the system adds fuel bypass valves and heaters, on the basis of the conventional hybrid configurations. To address the challenges of fluctuating load demands and maintaining optimal turbine inlet temperatures, the dynamic temperature and power output characteristics of each component are firstly analyzed under variable operating conditions using a mathematical model of the hybrid system. Then, on this basis, the temperature and power cooperative control strategy of the gybrid power system is designed.Simulation results indicate that the proposed control strategy allows the system to adapt smoothly to changing load demands, sustaining target turbine inlet temperatures while aligning with external power requirements. Findings also reveal that actively controlling turbine inlet temperatures not only supports efficient power tracking and safe operation but also significantly improves the hybrid system's overall efficiency.

Key words

solid oxide fuel cells / gas turbines / hybrid systems / temperature control / power control

Cite this article

Download Citations
Huo Haibo, Zhu Hongxiang, Xu Sheng, Cao Zhengliang, Xu Jingxiang, Li Xi. PERFORMANCE ANALYSIS AND COOPERATIVE CONTROL STRATEGY OF SOFC/MGT HYBRID POWER SYSTEM[J]. Acta Energiae Solaris Sinica. 2025, 46(6): 79-88 https://doi.org/10.19912/j.0254-0096.tynxb.2024-2025

References

[1] WANG X S, LYU X J, MI X C, et al.Coordinated control approach for load following operation of SOFC-GT hybrid system[J]. Energy, 2022, 248: 123548.
[2] 宋明, 仝佳佳, 蒋文春, 等. 甲烷混合燃料气内重整反应对平板式固体氧化物燃料电池性能影响[J]. 太阳能学报, 2025, 46(1): 373-382.
SONG M, TONG J J, JIANG W C, et al.Effect of internal reforming reaction of methane mixed fuel gas on performance of planar solid oxide fuel cells[J]. Acta energiae solaris sinica, 2025, 46(1): 373-382.
[3] GRILLO O, MAGISTRI L, MASSARDO A F.Hybrid systems for distributed power generation based on pressurisation and heat recovering of an existing 100 kW molten carbonate fuel cell[J]. Journal of power sources, 2003, 115(2): 252-267.
[4] WU X J, HUANG Q, ZHU X J.Power decoupling control of a solid oxide fuel cell and micro gas turbine hybrid power system[J]. Journal of power sources, 2011, 196(3): 1295-1302.
[5] CHEN J W, LIANG M Z, ZHANG H S, et al.Study on control strategy for a SOFC-GT hybrid system with anode and cathode recirculation loops[J]. International journal of hydrogen energy, 2017, 42(49): 29422-29432.
[6] 武鑫, 吴万哲, 白浩, 等. 基于深度神经网络的SOFC电堆温度场建模[J]. 太阳能学报, 2023, 44(7): 55-60.
WU X, WU W Z, BAI H, et al.Modelling of SOFC stack temperature field based on deep neural network[J]. Acta energiae solaris sinica, 2023, 44(7): 55-60.
[7] FERRARI M L.Solid oxide fuel cell hybrid system: control strategy for stand-alone configurations[J]. Journal of power sources, 2011, 196(5): 2682-2690.
[8] WANG X S, MI X C, LYU X J, et al.Fast and stable operation approach of ship solid oxide fuel cell-gas turbine hybrid system under uncertain factors[J]. International journal of hydrogen energy, 2022, 47(50): 21472-21491.
[9] JIA Z Z, SUN J, DOBBS H, et al.Feasibility study of solid oxide fuel cell engines integrated with sprinter gas turbines: modeling, design and control[J]. Journal of power sources, 2015, 275: 111-125.
[10] MCLARTY D, BROUWER J, SAMUELSEN S.Fuel cell-gas turbine hybrid system design part II: dynamics and control[J]. Journal of power sources, 2014, 254: 126-136.
[11] 霍海波, 谢根辉, 徐胜, 等. 基于模型的5 kW SOFC系统操作参数寻优[J]. 太阳能学报, 2023, 44(11): 443-449.
HUO H B, XIE G H, XU S, et al.Model-based optimization of operating parameters for 5 kW SOFC system[J]. Acta energiae solaris sinica, 2023, 44(11): 443-449.
[12] 吕小静. SOFC/GT混合动力系统运行关键问题研究[D].上海: 上海交通大学, 2016.
LYU X J.Key operational problem research of solid oxide fuel cell/gas turbine hybrid system[D]. Shanghai: Shanghai Jiao Tong University, 2016.
[13] 陈金伟. 基于引射回流的固体氧化物燃料电池-燃气轮机系统建模与控制策略研究[D]. 上海: 上海交通大学, 2018.
CHEN J W.Modeling and control strategy study of the solid oxide fuel cell-gas turbine system with ejector recirculation[D]. Shanghai: Shanghai Jiao Tong University, 2018.
[14] SORRENTINO M, GUEZENNEC Y G, PIANESE C, et al.Development of a control-oriented model for simulation of SOFC-based energy systems[C]//ASME 2005 international Mechanical Engineering Congress and Exposition. Orlando, Florida, USA, 2005: 1265-1272.
[15] MASSARDO A F, LUBELLI F.Internal reforming solid oxide fuel cell-gas turbine combined cycles (IRSOFC-GT): part A: cell model and cycle thermodynamic analysis[J]. Journal of engineering for gas turbines and power, 2000, 122(1): 27-35.
[16] GALLO M, MARRA D, SORRENTINO M, et al.A versatile computational tool for model-based design, control and diagnosis of a generic solid oxide fuel cell Integrated stack module[J]. Energy conversion and management, 2018, 171: 1514-1528.
[17] WU X J, GAO D H.Optimal robust control strategy of a solid oxide fuel cell system[J]. Journal of power sources, 2018, 374: 225-236.
[18] AGUIAR P, ADJIMAN C S, BRANDON N P.Anode- supported intermediate temperature direct internal reforming solid oxide fuel cell, I: model-based steady-state performance[J]. Journal of power sources, 2004, 138(1/2): 120-136.
[19] LYU X J, LU C H, WANG Y Z, et al.Effect of operating parameters on a hybrid system of intermediate-temperature solid oxide fuel cell and gas turbine[J]. Energy, 2015, 91: 10-19.
[20] SARAVANAMUTTOO H I H, ROGERS G F C, COHEN H, et al. Gas turbine theory[M]. 6th ed, United London: Pearson Education, 2009: 187-263.
[21] 蒋建华. 平板式固体氧化物燃料电池系统的动态建模与控制[D]. 武汉: 华中科技大学, 2013.
JIANG J H.Dynamic modeling and control of planar solid oxide fuel cell systems[D]. Wuhan: Huazhong University of Science and Technology, 2013.
PDF(2140 KB)

Accesses

Citation

Detail

Sections
Recommended

/