RESEARCH OF SHORT-TERM PHOTOVOLTAIC POWER PREDICTION BASED ON FOX-VMD COMBINED WITH WAVELET THRESHOLD DENOISING

Guo Wenkai, Wang Guo, Min Yongzhi, Su Pengfei, Liu Xinyue

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (6) : 260-270.

PDF(2440 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2440 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (6) : 260-270. DOI: 10.19912/j.0254-0096.tynxb.2024-2044

RESEARCH OF SHORT-TERM PHOTOVOLTAIC POWER PREDICTION BASED ON FOX-VMD COMBINED WITH WAVELET THRESHOLD DENOISING

  • Guo Wenkai, Wang Guo, Min Yongzhi, Su Pengfei, Liu Xinyue
Author information +
History +

Abstract

Aiming the problems of noise interference,difficulty in extracting the information contained in PV power data and the error of prediction models, a short-term PV power prediction method based on optimization data processing and prediction error correction was proposed. Firstly, the correlation coefficients of meteorological features affecting PV power were calculated using the combination assignment method. Secondly, the parameters of the variational mode decomposition (VMD) were optimized using the FOX optimization algorithm, and the optimal parameters of the wavelet thresholding method (WT) were determined through experiments, completed data decomposition and denoising. Subsequently,a bidirectional long short-term memory (BiLSTM) model was constructed for each intrinsic mode function (IMF) component, and the initial prediction results were obtained by superposition reconstruction. Finally, an error prediction model based on the BiLSTM neural network was established, to obtain the final PV short-term power prediction results by using error compensation method. Example analyses demonstrated that the root mean square error (RMSE), mean absolute error (MAE) and mean absolute percentage error (MAPE) values of the test set of the proposed method in this paper are 5.21 kW, 3.01 kW and 0.01%, respectively, which are 81.01%, 82.80%, and 88.89% lower than the original BiLSTM model, which means the method proposed in this paper can effectively extract the information, reduce the noise interference within the data, and mitigate the intrinsic error of the BiLSTM prediction model.

Key words

photovoltaic power generation / power forecasting / mode decomposition / wavelet threshold denoising / multi-stage predictive model

Cite this article

Download Citations
Guo Wenkai, Wang Guo, Min Yongzhi, Su Pengfei, Liu Xinyue. RESEARCH OF SHORT-TERM PHOTOVOLTAIC POWER PREDICTION BASED ON FOX-VMD COMBINED WITH WAVELET THRESHOLD DENOISING[J]. Acta Energiae Solaris Sinica. 2025, 46(6): 260-270 https://doi.org/10.19912/j.0254-0096.tynxb.2024-2044

References

[1] 董存, 王铮, 白捷予, 等. 光伏发电功率超短期预测方法综述[J]. 高电压技术, 2023, 49(7): 2938-2951.
DONG C, WANG Z, BAI J Y, et al.Review of ultra-short-term forecasting methods for photovoltaic power generation[J]. High voltage engineering, 2023, 49(7): 2938-2951.
[2] 周建国, 周路明, 王剑宇, 等. 基于优化分解与误差修正的光伏发电功率预测[J]. 太阳能学报, 2024, 45(7): 502-509.
ZHOU J G, ZHOU L M, WANG J Y, et al.PV power forecasting based on optimal decomposition and error correction[J]. Acta energiae solaris sinica, 2024, 45(7): 502-509.
[3] 汪鸿, 朱正甲, 陈建华, 等, 基于人工智能技术与物理方法结合的新能源功率预测研究[J]. 高电压技术, 2023, 49(S1): 111-117.
WANG H, ZHU Z J, CHEN J H, et al.Research on new energy power prediction based on the combination of artificial intelligence techniques and physical methods[J]. High voltage engineering, 2023, 49(S1): 111-117.
[4] JIA L Y, YUN S N, ZHAO Z N, et al.Improving short-term forecasting of solar power generation by using an EEMD-BiGRU model: a comparative study based on seven standalone models and six hybrid models[J]. International journal of green energy, 2024, 21(14): 3135-3158.
[5] 贾凌云, 云斯宁, 赵泽妮, 等. 神经网络短期光伏发电预测的应用研究进展[J]. 太阳能学报, 2022, 43(12): 88-97.
JIA L Y, YUN S N, ZHAO Z N, et al.Recent progress of short-term forecasting of photovoltaic generation based on artificial neural networks[J]. Acta energiae solaris sinica, 2022, 43(12): 88-97.
[6] 赵泽妮, 云斯宁, 贾凌云, 等. 基于统计模型的短期风能预测方法研究进展[J]. 太阳能学报, 2022, 43(11): 224-234.
ZHAO Z N, YUN S N, JIA L Y, et al.Recent progress in short-term forecasting of wind energy based on statistical models[J]. Acta energiae solaris sinica, 2022, 43(11): 224-234.
[7] 王涛, 李薇, 许野, 等. 计及相似日的VMD-FE-LSTM光伏出力组合预测模型研究[J]. 太阳能学报, 2024, 45(5): 490-499.
WANG T, LI W, XU Y, et al.Study on photovoltaic power prediction of VMD-FE-LSTM considering similar days[J]. Acta energiae solaris sinica, 2024, 45(5): 490-499.
[8] 王福忠, 王帅峰, 张丽. 基于VMD-LSTM与误差补偿的光伏发电超短期功率预测[J]. 太阳能学报, 2022, 43(8): 96-103.
WANG F Z, WANG S F, ZHANG L.Ultra short term power prediction of photovoltaic power generation based on VMD-LSTM and error compensation[J]. Acta energiae solaris sinica, 2022, 43(8): 96-103.
[9] 黄泽, 毕贵红, 谢旭, 等. 基于MBI-PBI-ResNet的超短期光伏功率预测[J]. 电力系统保护与控制, 2024, 52(2): 165-176.
HUANG Z, BI G H, XIE X, et al.Ultra-short-term PV power prediction based on MBI-PBI-ResNet[J]. Power system protection and control, 2024, 52(2): 165-176.
[10] 毕贵红, 张梓睿, 赵四洪, 等. 基于多模式分解和多分支输入的光伏功率超短期预测[J]. 高电压技术, 2024, 50(9): 3837-3849.
BI G H, ZHANG Z R, ZHANG S H, et al.Ultra-short-term prediction of photovoltaic power based on multi-mode decomposition and multi-branch input[J]. High voltage engineering,2024, 50(9): 3837-3849.
[11] 龙小慧, 秦际赟, 张青雷, 等. 基于相似日聚类及模态分解的短期光伏发电功率组合预测研究[J]. 电网技术, 2024, 48(7): 2948-2957.
LONG X H, QIN J Y, ZHANG Q L, et al.Short-term photovoltaic power prediction study based on similar day clustering and modal decomposition[J]. Power system technology, 2024, 48(7): 2948-2957.
[12] 王谦, 高海波, 左文. 基于概率稀疏自注意力的船舶短期电力负荷预测[J]. 大连海事大学学报, 2024, 50(1): 134-142.
WANG Q, GAO H B, ZUO W.Ships short-term power load prediction based on ProbSparse self-attention[J]. Journal of Dalian Maritime University, 2024, 50(1): 134-142.
[13] 杨汪洋, 魏云冰, 罗程浩. 基于CVMD-TCN-BiLSTM的短期电力负荷预测[J]. 电气工程学报, 2024, 19(2): 163-172.
YANG W Y, WEI Y B, LUO C H.Short-term electricity load forecasting based on CVMD-TCN-BiLSTM[J]. Journal of electrical engineering, 2024, 19(2): 163-172.
[14] 马莹莹, 靳雪振. 基于EEMD和小波阈值的短时交通流预测研究[J]. 重庆交通大学学报(自然科学版), 2022, 41(6): 22-29.
MA Y Y, JIN X Z.Short-term traffic flow forecast method based on EEMD-wavelet threshold[J]. Journal of Chongqing Jiaotong University (natural science), 2022, 41(6): 22-29.
[15] 王东风, 刘婧, 黄宇, 等. 结合太阳辐射量计算与CNN-LSTM组合的光伏功率预测方法研究[J]. 太阳能学报, 2024, 45(2): 443-450.
WANG D F, LIU J, HUANG Y, et al.Photovoltaic power prediction method combinating solar radiation calculation and CNN-LSTM[J]. Acta energiae solaris sinica, 2024, 45(2): 443-450.
[16] 王晓霞, 俞敏, 冀明, 等. 基于气候相似性与SSA-CNN-LSTM的光伏功率组合预测[J]. 太阳能学报, 2023, 44(6): 275-283.
WANG X X, YU M, JI M, et al.Photovoltaic power combination forecasting based on climate similarity and SSA-CNN-LSTM[J]. Acta energiae solaris sinica, 2023, 44(6): 275-283.
[17] 张青山, 王丽婕, 郝颖, 等. 基于卫星云图和晴空模型的分布式光伏电站太阳辐照度超短期预测[J]. 高电压技术, 2022, 48(8): 3271-3281.
ZHANG Q S, WANG L J, HAO Y, et al.Ultra-short-term solar irradiance prediction of distributed photovoltaic power stations based on satellite cloud images and clear sky model[J]. High voltage engineering, 2022, 48(8): 3271-3281.
[18] GE Y D, ZHANG C, WANG Y W, et al.A novel hybrid model based on multiple influencing factors and temporal convolutional network coupling ReOSELM for wind power prediction[J]. Energy conversion and management, 2024, 313: 118632.
[19] MOHAMMED H, RASHID T.FOX: a FOX-inspired optimization algorithm[J]. Applied intelligence, 2023, 53(1): 1030-1050.
[20] DONG H C, LIU S, LIU D L, et al.Enhanced infrasound denoising for debris flow analysis: integrating empirical mode decomposition with an improved wavelet threshold algorithm[J]. Measurement, 2024, 235: 114961.
[21] 蒋田勇, 喻晨宇, 黄可, 等. 基于AO算法优化VMD参数联合小波阈值的桥梁信号去噪方法[J]. 中国公路学报, 2023, 36(7): 158-168.
JIANG T Y, YU C Y, HUANG K, et al.Bridge signal denoising method combined VMD parameters optimized by Aquila optimizer with wavelet threshold[J]. China journal of highway and transport, 2023, 36(7): 158-168.
[22] LEI W, WANG G, WAN B Q, et al.High voltage shunt reactor acoustic signal denoising based on the combination of VMD parameters optimized by coati optimization algorithm and wavelet threshold[J]. Measurement, 2024, 224: 113854.
[23] 姜建国, 杨效岩, 毕洪波. 基于VMD-FE-CNN-BiLSTM的短期光伏发电功率预测[J]. 太阳能学报, 2024, 45(7):462-473.
JIANG J G, YANG X Y, BI H B.Photovoltaic power forecasting method based on VMD-FE-CNN-BiLSTM[J]. Acta energiae solaris sinica, 2024, 45(7): 462-473.
[24] 尚海昆, 许俊彦, 李宇才, 等. CEEMDAN在变压器振动信号提取中的应用[J]. 控制理论与应用, 2022, 39(3): 459-468.
SHANG H K, XU J Y, LI Y C, et al.Application of CEEMDAN in vibration signal extraction of transformer[J]. Control theory & applications, 2022, 39(3): 459-468.
[25] 时培明, 郭轩宇, 杜清灿, 等. 基于TCN-BiLSTM-Attention-ESN的光伏功率预测[J]. 太阳能学报, 2024, 45(9): 304-316.
SHI P M, GUO X Y, DU Q C, et al.Photovoltaic power prediction based on TCN-BiLSTM-Attention-ESN[J]. Acta energiae solaris sinica, 2024, 45(9): 304-316.
PDF(2440 KB)

Accesses

Citation

Detail

Sections
Recommended

/