LITHIUM BATTERY LIFESPAN PREDICTION METHOD INTEGRATING DYNAMIC CONVOLUTION TRANSFORMER AND CMA-ES

Wang Xiongran, Zhang Jing

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (6) : 1-8.

PDF(1746 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1746 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (6) : 1-8. DOI: 10.19912/j.0254-0096.tynxb.2024-2097
Special Topics of Academic Papers at the 27th Annual Meeting of the China Association for Science and Technology

LITHIUM BATTERY LIFESPAN PREDICTION METHOD INTEGRATING DYNAMIC CONVOLUTION TRANSFORMER AND CMA-ES

  • Wang Xiongran, Zhang Jing
Author information +
History +

Abstract

The prediction of lithium battery lifespan is of great significance for energy management and maintenance. To address challenges such as complex multidimensional time series data, long-term dependencies, and dynamic changes in characteristics during the prediction process, this paper proposes a lithium-ion battery life prediction model based on dynamic convolutional neural networks and Transformer(DCF), covariance matrix adaptive adjustment evolution strategy(CMA-ES), and multi-head self-attention mechanism. The DCF dynamically extracts key features from time series data, reduces data dimensionality and redundancy, and captures long-term dependencies. CMA-ES optimizes model hyperparameters to enhance the model's ability to model local features and global dependencies. The multi-head self-attention mechanism further focuses on important features and handles complex nonlinear dynamic relationships. Experimental validation is conducted using the publicly available lithium battery dataset provided by NASA. Results show that the proposed method achieves a minimum average absolute error of 0.28%, outperforming most existing methods using the same dataset. The experiments further demonstrate improvements in prediction accuracy and generalization ability, especially in long-term lifespan prediction, where the model exhibits higher precision and robustness, providing more reliable technical support for lithium battery lifespan prediction.

Key words

lithium batteries / convolutional neural networks / covariance matrix / multi head self attention mechanism / model hyperparameters / nonlinear

Cite this article

Download Citations
Wang Xiongran, Zhang Jing. LITHIUM BATTERY LIFESPAN PREDICTION METHOD INTEGRATING DYNAMIC CONVOLUTION TRANSFORMER AND CMA-ES[J]. Acta Energiae Solaris Sinica. 2025, 46(6): 1-8 https://doi.org/10.19912/j.0254-0096.tynxb.2024-2097

References

[1] YONG J Y, RAMACHANDARAMURTHY V K, TAN K M, et al.A review on the state-of-the-art technologies of electric vehicle, its impacts and prospects[J]. Renewable and sustainable energy reviews, 2015, 49: 365-385.
[2] ARDESHIRI R R, BALAGOPAL B, ALSABBAGH A, et al.Machine learning approaches in battery management systems: state of the art: remaining useful life and fault detection[C]//2020 2nd IEEE International Conference on Industrial Electronics for Sustainable Energy Systems (IESES). Cagliari, Italy, 2020: 61-66.
[3] MAHESHWARI A, PATERAKIS N G, SANTARELLI M, et al.Optimizing the operation of energy storage using a non-linear lithium-ion battery degradation model[J]. Applied energy, 2020, 261: 114360.
[4] HOSSAIN LIPU M S, HUSSAIN A, SAAD M H M, et al. Improved recurrent NARX neural network model for state of charge estimation of lithium-ion battery using pso algorithm[C]//2018 IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE). Penang, 2018: 354-359.
[5] 刘月峰, 赵光权, 彭喜元. 多核相关向量机优化模型的锂电池剩余寿命预测方法[J]. 电子学报, 2019, 47(6): 1285-1292.
LIU Y F, ZHAO G Q, PENG X Y.A lithium-ion battery remaining using life prediction method based on multi-kernel relevance vector machine optimized model[J]. Acta electronica sinica, 2019, 47(6): 1285-1292.
[6] HOW D N T, HANNAN M A, HOSSAIN LIPU M S, et al. State of charge estimation for lithium-ion batteries using model-based and data-driven methods: a review[J]. IEEE access, 2019, 7: 136116-136136.
[7] 董磊, 赖纪东, 苏建徽, 等. 基于IMAFFRLS-EKF的锂电池在线参数辨识和SOC估计方法[J]. 太阳能学报, 2024, 45(6): 66-74.
DONG L, LAI J D, SU J H, et al.Online parameter identification and SOC estimation of lithium battery based on IMAFFRLS-EKF[J]. Acta energiae solaris sinica, 2024, 45(6): 66-74.
[8] 李谦, 姜帆, 韩乔妮, 等. 基于一阶ECM-IGPR的锂离子电池SOC及SOH联合估计框架[J]. 太阳能学报, 2024, 45(5): 240-250.
LI Q, JIANG F, HAN Q N, et al.Joint first order SOC and SOH estimation frame work for Li-ion battery based on ECM-IGPR[J]. Acta energiae solaris sinica, 2024, 45(5): 240-250.
[9] 魏腾飞, 潘庭龙. 基于改进PSO优化LSTM网络的短期电力负荷预测[J]. 系统仿真学报, 2021, 33(8): 1866-1874.
WEI T F, PAN T L.Short-term power load forecasting based on LSTM neural network optimized by improved PSO[J]. Journal of system simulation, 2021, 33(8): 1866-1874.
[10] 莫易敏, 余自豪, 叶鹏, 等. 基于迁移学习与GRU神经网络结合的锂电池SOH估计[J]. 太阳能学报, 2024, 45(3): 233-239.
MO Y M, YU Z H, YE P, et al.Lithium battery SOH estimation method based on combination of transfer learning and GRU neural network[J]. Acta energiae solaris sinica, 2024, 45(3): 233-239.
[11] CHEN D Q, ZHOU X Z.AttMoE: attention with mixture of experts for remaining useful life prediction of lithium-ion batteries[J]. Journal of energy storage, 2024, 84: 110780.
[12] ZHANG Y, TU L, XUE Z W, et al.Weight optimized unscented Kalman filter for degradation trend prediction of lithium-ion battery with error compensation strategy[J]. Energy, 2022, 251: 123890.
[13] QIAN C, XU B H, CHANG L, et al.Convolutional neural network based capacity estimation using random segments of the charging curves for lithium-ion batteries[J]. Energy, 2021, 227: 120333.
[14] WANG X H, DAI K, HU M, et al.Lithium-ion battery health state and remaining useful life prediction based on hybrid model MFE-GRU-TCA[J]. Journal of energy storage, 2024, 95: 112442.
PDF(1746 KB)

Accesses

Citation

Detail

Sections
Recommended

/