TWO-LEVEL GAME OPTIMIZATION STRATEGY FOR DISTRIBUTION NETWORK AND MULTI-PARK INTEGRATED ENERGY SYSTEM CONSIDERING COMPREHENSIVE CONTRIBUTION OF ELECTRICITY AND CARBON

Li Xinpeng, Cheng Jing, Luo Xu, Wang Lixin

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (7) : 104-116.

PDF(2537 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2537 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (7) : 104-116. DOI: 10.19912/j.0254-0096.tynxb.2024-2227
Special Topics of Academic Papers at the 37th Annual Meeting of the China Association for Science and Technology

TWO-LEVEL GAME OPTIMIZATION STRATEGY FOR DISTRIBUTION NETWORK AND MULTI-PARK INTEGRATED ENERGY SYSTEM CONSIDERING COMPREHENSIVE CONTRIBUTION OF ELECTRICITY AND CARBON

  • Li Xinpeng1, Cheng Jing1,2, Luo Xu1, Wang Lixin1
Author information +
History +

Abstract

In order to realize the optimal operation of multi-park integrated energy systems(MPIES), while ensuring the economy and stability of the system, and balancing the conflicts among multi-stakeholders between distribution network operators(DSO) and park operators, a DSO-MPIES optimization strategy framework based on two-level game is proposed. Under this framework, the DSO acts as a leader, setting electricity price to guide the response of MPIES alliance with the goal of maximizing its own revenue. The MPIES alliance, as a follower, aims to minimize its own minimum cost and responds to DSO decisions through point-to-point electricity-carbon transactions between parks. In order to solve the icsue of collaborative operation within MPIES, the framework introduces Nash bargaining theory and introduces the comprehensive contribution of electricity and carbon in the process of benefit distribution to fairly distribute the benefits of each park, and determines the combined weight based on the anti-entropy weight method combined with subjective and objective weighting. Finally, the distributed optimization algorithm of bisection method and the alternating direction multiplier method(ADMM) are used to solve the model, and it is proved in the example that the proposed model and method can reduce the carbon emissions of MPIES and improve the income of each subject in a balanced way.

Key words

multi-park integrated energy system / distribution system operator / comprehensive contribution / P2P electricity-carbon trading / two-level game

Cite this article

Download Citations
Li Xinpeng, Cheng Jing, Luo Xu, Wang Lixin. TWO-LEVEL GAME OPTIMIZATION STRATEGY FOR DISTRIBUTION NETWORK AND MULTI-PARK INTEGRATED ENERGY SYSTEM CONSIDERING COMPREHENSIVE CONTRIBUTION OF ELECTRICITY AND CARBON[J]. Acta Energiae Solaris Sinica. 2025, 46(7): 104-116 https://doi.org/10.19912/j.0254-0096.tynxb.2024-2227

References

[1] 彭静, 王军, 亓富军, 等. “双碳” 目标下配电网多阶段扩展规划[J]. 电力系统保护与控制, 2022, 50(7): 153-161.
PENG J, WANG J, QI F J, et al.Multi-stage expansion planning of a distribution network with double-carbon policy[J]. Power system protection and control, 2022, 50(7): 153-161.
[2] 李蕊睿, 李奇, 蒲雨辰, 等. 计及功率交互约束的含电-氢混合储能的多微电网系统容量优化配置[J]. 电力系统保护与控制, 2022, 50(14): 53-64.
LI R R, LI Q, PU Y C, et al.Optimal configuration of an electric-hydrogen hybrid energy storage multi-microgrid system considering power interaction constraints[J]. Power system protection and control, 2022, 50(14): 53-64.
[3] 乔学博, 杨志祥, 李勇, 等. 计及两级碳交易和需求响应的多微网合作运行优化策略[J]. 高电压技术, 2022, 48(7): 2573-2583.
QIAO X B, YANG Z X, LI Y, et al.Optimization strategy for cooperative operation of multi-microgrids considering two-level carbon trading and demand response[J]. High voltage engineering, 2022, 48(7): 2573-2583.
[4] 田海东, 何山, 艾纯玉, 等. 计及能源交易下基于纳什议价模型的多微网合作博弈运行优化策略[J]. 电力系统保护与控制, 2024, 52(6): 29-41.
TIAN H D, HE S, AI C Y, et al.Optimization strategy for cooperative game operation of multi-microgrids based on the Nash bargaining model considering energy trading[J]. Power system protection and control, 2024, 52(6): 29-41.
[5] 王金锋, 于广亮, 姜炎君, 等. 基于阶梯碳交易的多微网电能合作运行优化策略[J]. 电网与清洁能源, 2023, 39(11): 28-39.
WANG J F, YU G L, JIANG Y J, et al.The optimization strategy for collaborative operation of multi-microgrids based on tiered carbon trading[J]. Power system and clean energy, 2023, 39(11): 28-39.
[6] 刘可真, 董敏, 杨春昊, 等. 基于纳什谈判的智能园区P2P电能交易优化运行[J]. 电力自动化设备, 2023, 43(5): 45-53.
LIU K Z, DONG M, YANG C H, et al.Optimal operation of P2P electric power trading in smart park based on Nash negotiation[J]. Electric power automation equipment, 2023, 43(5): 45-53.
[7] 王玉东, 胡俊杰. 考虑多主体交互策略的综合能源系统P2P能-碳管理方法[J]. 系统仿真学报, 2024, 36(10): 2488-2502.
WANG Y D, HU J J.Peer-to-peer energy-carbon management method of multiple integrated energy systems considering multi-agent interaction strategy[J]. Journal of system simulation, 2024, 36(10): 2488-2502.
[8] 万昶. 基于纳什议价的多综合能源微网合作运行优化策略[D]. 南昌: 南昌大学, 2023.
WAN C.Cooperative operation optimization strategy of multi-comprehensive energy microgrid based on Nash bargaining[D]. Nanchang: Nanchang University, 2023.
[9] WU C T, ZHOU D Z, LIN X N, et al.A novel energy cooperation framework for multi-island microgrids based on marine mobile energy storage systems[J]. Energy, 2022, 252: 124060.
[10] 张冲标, 钱辰雯, 俞红燕, 等. 基于ADMM的多场景县域多微电网交互运行策略[J]. 中国电力, 2024, 57(2): 9-18.
ZHANG C B, QIAN C W, YU H Y, et al.Interactive operation strategy for multi-scenario county-level multi-microgrid based on ADMM[J]. Electric power, 2024, 57(2): 9-18.
[11] 祝荣, 任永峰, 孟庆天, 等. 基于合作博弈的综合能源系统电-热-气协同优化运行策略[J]. 太阳能学报, 2022, 43(4): 20-29.
ZHU R, REN Y F, MENG Q T, et al.Electricity-heat-gas cooperative optimal operation strategy of integrated energy system based on cooperative game[J]. Acta energiae solaris sinica, 2022, 43(4): 20-29.
[12] 吴锦领, 楼平, 管敏渊, 等. 基于非对称纳什谈判的多微网电能共享运行优化策略[J]. 电网技术, 2022, 46(7): 2711-2723.
WU J L, LOU P, GUAN M Y, et al.Operation optimization strategy of multi-microgrids energy sharing based on asymmetric Nash bargaining[J]. Power system technology, 2022, 46(7): 2711-2723.
[13] 姜恩宇, 陈周, 史雷敏, 等. 计及多重不确定性与综合贡献率的多微网合作运行策略[J]. 太阳能学报, 2023, 44(10): 80-89.
JIANG E Y, CHEN Z, SHI L M, et al.Cooperative operation strategy of multi-microgrids based on multiple uncertainties and comprehensive contribution rate[J]. Acta energiae solaris sinica, 2023, 44(10): 80-89.
[14] 柏昊阳, 李华强, 臧天磊, 等. 柔性网架结构下考虑双边交易的多微网与配网协同规划[J]. 电力系统保护与控制, 2024, 52(6): 51-64.
BAI H Y, LI H Q, ZANG T L, et al.Collaborative planning of multiple microgrids and a distribution network considering bilateral transactions in a flexible network structure[J]. Power system protection and control, 2024, 52(6): 51-64.
[15] 李咸善, 马凯琳, 程杉. 含多区域综合能源系统的主动配电网双层博弈优化调度策略[J]. 电力系统保护与控制, 2022, 50(1): 8-22.
LI X S, MA K L, CHENG S.Dispatching strategy of an active distribution network with multiple regional integrated energy systems based on two-level game optimization[J]. Power system protection and control, 2022, 50(1): 8-22.
[16] 陈乐飞, 朱自伟, 王凯, 等. 基于混合博弈的配电网与多综合能源微网优化运行[J]. 电网技术, 2023, 47(6): 2229-2243.
CHEN L F, ZHU Z W, WANG K, et al.Optimal operation of distribution networks and multiple integrated energy microgrids based on mixed game theory[J]. Power system technology, 2023, 47(6): 2229-2243.
[17] 董雷, 涂淑琴, 李烨, 等. 基于元模型优化算法的主从博弈多虚拟电厂动态定价和能量管理[J]. 电网技术, 2020, 44(3): 973-983.
DONG L, TU S Q, LI Y, et al.A Stackelberg game model for dynamic pricing and energy management of multiple virtual power plants using metamodel-based optimization method[J]. Power system technology, 2020, 44(3): 973-983.
[18] 屈伯阳, 李宏伟, 付立思. 基于Critic权重法与反熵权法组合的风电功率概率预报[J/OL]. 南方电网技术, 2024: 1-14. (2024-06-25). https://kns.cnki.net/KCMS/detail/detail.aspx?filename=NFDW20240624002&dbname=CJFD&dbcode=CJFQ.
QU B Y, LI H W, FU L S. Probability prediction of wind power based on the combination of critic weight method and anti-entropy weight method[J/OL]. Southern power system technology, 2024: 1-14. (2024-06-25). https://kns.cnki.net/KCMS/detail/detail.aspx?filename=NFDW20240624002&dbname=CJFD&dbcode=CJFQ.
[19] 林文硕, 周荣生, 田慧丽, 等. 基于组合权重-TOPSIS的配电网调度水平评估[J]. 电力系统及其自动化学报, 2023, 35(7): 95-101.
LIN W S, ZHOU R S, TIAN H L, et al.Assessment of distribution network scheduling level based on combined weight-TOPSIS[J]. Proceedings of the CSU-EPSA, 2023, 35(7): 95-101.
[20] 闫群民, 肖冬雪, 王磊, 等. 计及终端模式差异的微电网可靠性评估方法[J]. 电力系统保护与控制, 2025, 53(2): 176-187.
YAN Q M, XIAO D X, WANG L, et al.Microgrid reliability evaluation methods accounting for terminal mode differences[J]. Power system protection and control, 2025, 53(2): 176-187.
[21] 初壮, 李秋雨, 王议坚. 基于非零和博弈的互联异构多微网系统电-热-碳优化调度策略[J]. 电网技术, 2024, 48(6): 2287-2296.
CHU Z, LI Q Y, WANG Y J.Optimal dispatch of interconnected heterogeneous multi-microgrids system considering electricity-heat-carbon trades based on non-zero-sum game[J]. Power system technology, 2024, 48(6): 2287-2296.
[22] 孙文杰, 武家辉, 张强. 基于双层博弈的配电网与多综合能源微网协调优化[J]. 电力系统保护与控制, 2024, 52(2): 26-38.
SUN W J, WU J H, ZHANG Q.Coordinated optimization of a distribution network and multi-integrated energy microgrid based on a double-layer game[J]. Power system protection and control, 2024, 52(2): 26-38.
[23] 张忠会, 熊骁跃, 万昶, 等. 计及电-碳交易与综合贡献率的多微网合作运行优化策略[J]. 电网技术, 2024, 48(8): 3258-3268.
ZHANG Z H, XIONG X Y, WAN C, et al.Multi-microgrids cooperative operation optimization strategy considering electricity-carbon trading and comprehensive contribution rate[J]. Power system technology, 2024, 48(8): 3258-3268.
PDF(2537 KB)

Accesses

Citation

Detail

Sections
Recommended

/