RESEARCH ON RURAL INTEGRATED ENERGY SYSTEM CONSIDERING BUILDING RTPV/T AND BIOMASS

Zhang Shicong, Li Hanyu, Liu Zhijian, Wu Di, Yang Xinyan, He Jiangtao

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (7) : 93-103.

PDF(2164 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2164 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (7) : 93-103. DOI: 10.19912/j.0254-0096.tynxb.2024-2357
Special Topics of Academic Papers at the 36th Annual Meeting of the China Association for Science and Technology

RESEARCH ON RURAL INTEGRATED ENERGY SYSTEM CONSIDERING BUILDING RTPV/T AND BIOMASS

  • Zhang Shicong1, Li Hanyu2, Liu Zhijian2, Wu Di2, Yang Xinyan1, He Jiangtao3
Author information +
History +

Abstract

Based on the analysis of rural energy characteristics and fully tapping into the potential of rooftop photovoltaic/solar thermal energy supply, a rural comprehensive energy system based on photovoltaic biomass synergy is proposed in collaboration with biomass. The results show that rooftop photovoltaics can supply 75.36% of the system's electricity, rooftop collectors can meet 57.14% of the system’s heat load, and the remaining load is provided by biomass energy. Rooftops can supply a large amount of renewable energy to the system. The cost of the rooftop photovoltaic/thermal and biomass distributed energy system is 1.59 million yuan, while the cost of the traditional power grid supply system is 3.27 million yuan. Compared with traditional power grid supply systems, rural rooftop photovoltaic/thermal biomass distributed energy systems are more economical and environmentally friendly.

Key words

distributed energy / solar energy / biomass / rural areas / rooftop PV / photovoltaic-biomass synergy

Cite this article

Download Citations
Zhang Shicong, Li Hanyu, Liu Zhijian, Wu Di, Yang Xinyan, He Jiangtao. RESEARCH ON RURAL INTEGRATED ENERGY SYSTEM CONSIDERING BUILDING RTPV/T AND BIOMASS[J]. Acta Energiae Solaris Sinica. 2025, 46(7): 93-103 https://doi.org/10.19912/j.0254-0096.tynxb.2024-2357

References

[1] 凌薇, 金虹. 乡土·宜居·绿色: 基于调研与实测的北方农村住宅人居环境改善研究[J]. 建筑科学, 2018, 34(8): 147-155.
LING W, JIN H.Vernacular·livable·green: research on improvement of human settlements environment of rural residential building in north base on survey and field test[J]. Building science, 2018, 34(8): 147-155.
[2] 国家统计局.中国统计年鉴[M].北京: 中国统计出版社, 2024.
National Bureau of Statistics. China statistical yearbook[M]. Beijing: China Statistics Press, 2024.
[3] 胡晓燕, 包晓斌, 佘宗昀. 农村新型能源体系建设的挑战与对策[J]. 中国国土资源经济, 2024, 37(11): 54-62, 89.
HU X Y, BAO X B, SHE Z Y.Challenges and countermeasures for building a new rural energy system[J]. Natural resource economics of China, 2024, 37(11): 54-62, 89.
[4] 夏荣立, 石诚, 王程. 农村电网改造升级问题与建议[J]. 中国工程咨询, 2024(10): 104-107.
XIA R L, SHI C, WANG C.Issues and suggestions on rural power grid transformation and upgrading[J]. China engineering consultants, 2024(10): 104-107.
[5] 韩中合, 祁超, 丁敬, 等. 基于太阳能和生物质能的农村分布式供能系统研究[J]. 太阳能学报, 2019, 40(11): 3164-3171.
HAN Z H, QI C, DING J, et al.Research on distributed energy supply system based on solar energy and biomass energy in rural area[J]. Acta energiae solaris sinica, 2019, 40(11): 3164-3171.
[6] 祝颖, 邵波, 刘艳峰, 等. 分布式能源系统最优配置模式研究: 以关中地区新农村为例[J]. 太阳能学报, 2019, 40(9): 2547-2553.
ZHU Y, SHAO B, LIU Y F, et al.Study on optimal allocation of distributed energy systems: a case study of new countryside in Guanzhong region[J]. Acta energiae solaris sinica, 2019, 40(9): 2547-2553.
[7] 国家能源局. 《关于开展风电和光伏发电资源普查试点工作的通知》政策解读[EB/OL].https://www.nea.gov.cn/2024-06/06/c_1310777428.htm.
National Energy Administration.Notice on carrying out pilot work of wind and photovoltaic power resource census policy interpretation[EB/OL]. https://www.nea.gov.cn/2024-06/06/c_1310777428.htm.
[8] 高明非, 张策, 解彤, 等. 考虑风光消纳的综合能源系统多元储能优化配置方法[J]. 动力工程学报, 2023, 43(6): 796-804.
GAO M F, ZHANG C, XIE T, et al.Multiple energy storage optimal configuration method for comprehensive energy system considering wind/photovoltaic power accommodation[J]. Journal of Chinese Society of Power Engineering, 2023, 43(6): 796-804.
[9] 张文. 建筑一体化光伏屋顶发电节能研究[J]. 电气技术与经济, 2024(7): 68-70.
ZHANG W.Research on energy efficiency of building integrated photovoltaic roof power generation[J]. Electrical equipment and economy, 2024(7): 68-70.
[10] 陈忠华, 陈致远, 王仁顺, 等. 光伏幕墙建筑能效评估与提升策略[J]. 科学技术与工程, 2022, 22(11): 4440-4448.
CHEN Z H, CHEN Z Y, WANG R S, et al.Energy efficiency evaluation and improvement strategies of photovoltaic curtain wall building[J]. Science technology and engineering, 2022, 22(11): 4440-4448.
[11] 周鹏, 朱晓彤, 吴俊, 等. 考虑参与碳交易市场的大规模屋顶光伏经济性分析[J]. 电力工程技术, 2023, 42(6): 83-90.
ZHOU P, ZHU X T, WU J, et al.Economic analysis of large-scale rooftop photovoltaics considering carbon trading market[J]. Electric power engineering technology, 2023, 42(6): 83-90.
[12] 于瑛, 姚星, 丑锦帅, 等. 城镇典型住宅建筑屋顶分布式光伏系统潜能分析[J]. 太阳能学报, 2023, 44(7): 182-190.
YU Y, YAO X, CHOU J S, et al.Potential analysis of distributed PV systems on roof of typical residential building in urban area[J]. Acta energiae solaris sinica, 2023, 44(7): 182-190.
[13] 崔杨, 孙喜斌, 付小标, 等. 考虑电转氨和生物质废能转换的农村化工综合能源系统低碳调度方法[J]. 电网技术, 2024, 48(8): 3350-3360.
CUI Y, SUN X B, FU X B, et al.Low-carbon dispatch method of rural chemical industry integrated energy system considering power to ammonia and biomass waste energy conversion[J]. Power system technology, 2024, 48(8): 3350-3360.
[14] 赵安军, 焦阳, 于军琪, 等. 面向乡村建筑分时分区用能需求的零碳综合能源系统设计优化[J]. 太阳能学报, 2024, 45(7): 369-378.
ZHAO A J, JIAO Y, YU J Q, et al.Design optimization of net zero carbon integrated energy system for rural buildings based on temporal and spatial energy demand[J]. Acta energiae solaris sinica, 2024, 45(7): 369-378.
[15] 郝媛媛, 孙方田, 张静宇. 华北地区新农村住宅低碳能源系统分析[J]. 煤气与热力, 2024, 44(7): 43-46.
HAO Y Y, SUN F T, ZHANG J Y.Analysis of low-carbon energy system for new rural housings in North China[J]. Gas & heat, 2024, 44(7): 43-46.
[16] 高建伟, 张艺, 高芳杰, 等. 农业综合能源系统多场景置信间隙决策低碳调度[J]. 电力建设, 2024, 45(5): 105-117.
GAO J W, ZHANG Y, GAO F J, et al.Low-carbon scheduling for multi-scenario confidence gap decision making for integrated energy systems in agriculture[J]. Electric power construction, 2024, 45(5): 105-117.
[17] 王永利, 韩煦, 刘晨, 等. 基于生-光耦合利用的乡村电-热综合能源系统规划[J]. 电力建设, 2023, 44(3): 1-14.
WANG Y L, HAN X, LIU C, et al.Rural electricity-heat integrated energy system planning based on coupling utilization of biomass and solar resources[J]. Electric power construction, 2023, 44(3): 1-14.
[18] DU S P, WU D, DAI Z, et al.Regional collaborative planning equipped with shared energy storage under multi-time scale rolling optimisation method[J]. Energy, 2023, 277: 127680.
[19] ZHANG L H, LI S R, NIE Q Y, et al.A two-stage benefit optimization and multi-participant benefit-sharing strategy for hybrid renewable energy systems in rural areas under carbon trading[J]. Renewable energy, 2022, 189: 744-761.
[20] SCHROTENBOER A H, VEENSTRA A A T, UIT HET BROEK M A J, et al. A green hydrogen energy system: optimal control strategies for integrated hydrogen storage and power generation with wind energy[J]. Renewable and sustainable energy reviews, 2022, 168: 112744.
[21] MELGAR A, PÉREZ J F, LAGET H, et al. Thermochemical equilibrium modelling of a gasifying process[J]. Energy conversion and management, 2007, 48(1): 59-67.
[22] SEZER S, KARTAL F, ÖZVEREN U.Artificial intelligence approach in gasification integrated solid oxide fuel cell cycle[J]. Fuel, 2022, 311: 122591.
[23] 张晓烽. 生物质与太阳能、地热能耦合建筑CCHP系统集成研究[D]. 长沙: 湖南大学, 2018.
ZHANG X F.Integration research of building cooling heating and power system coupling biomass, solar and geothermal energy[D]. Changsha: Hunan University, 2018.
[24] JGJ 26—2018, 严寒和寒冷地区居住建筑节能设计标准[S].
JGJ 26—2018, Design standard for energy efficiency of residential buildings in severe cold and cold zones[S].
[25] GHALY A E, ERGÜDENLER A, LAUFER E. Agglomeration characteristics of alumina sand-straw ash mixtures at elevated temperatures[J]. Biomass and bioenergy, 1993, 5(6): 467-480.
PDF(2164 KB)

Accesses

Citation

Detail

Sections
Recommended

/