CloudSwinNetLite: LIGHTWEIGHT FINE-GRAINED SEGMENTATION NETWORK FOR GROUND-BASED CLOUD IMAGE

Shi Chaojun, Xie Xiongbin, Zhang Ke, Su Zibo, Zhang Xiaoyun, Li Xingkuan

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (11) : 374-382.

PDF(3949 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(3949 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (11) : 374-382. DOI: 10.19912/j.0254-0096.tynxb.2024-2425

CloudSwinNetLite: LIGHTWEIGHT FINE-GRAINED SEGMENTATION NETWORK FOR GROUND-BASED CLOUD IMAGE

  • Shi Chaojun1,2, Xie Xiongbin1, Zhang Ke1,2, Su Zibo1, Zhang Xiaoyun1, Li Xingkuan1
Author information +
History +

Abstract

In existing cloud image segmentation research, most methods only distinguish between the sky and clouds, neglecting the inherent differences among various cloud types. In addition, many current models are computationally intensive and inefficient, making them unsuitable for the real-time segmentation of cloud images and thus limiting their application in ultra-short-term photovoltaic power forecasting. To overcome these challenges, we propose CloudSwinNetLite, a lightweight fine-grained cloud image segmentation network. The model adopts an encoder-decoder structure with Swin Transformer as the base module, using a lightweight multi-head self-attention mechanism (W-GLWMSA) and a ghost-based inverted residual feed-forward network (GIRFFN). These designs jointly enhance computational efficiency while preserving high segmentation accuracy. Experimental results demonstrate that CloudSwinNetLite achieves effective fine-grained cloud segmentation with substantially reduced computational cost compared with existing models.

Key words

ground-based cloud image / photovoltaic power / forecasting / fine-grained segmentation / lightweight net

Cite this article

Download Citations
Shi Chaojun, Xie Xiongbin, Zhang Ke, Su Zibo, Zhang Xiaoyun, Li Xingkuan. CloudSwinNetLite: LIGHTWEIGHT FINE-GRAINED SEGMENTATION NETWORK FOR GROUND-BASED CLOUD IMAGE[J]. Acta Energiae Solaris Sinica. 2025, 46(11): 374-382 https://doi.org/10.19912/j.0254-0096.tynxb.2024-2425

References

[1] 王育飞, 郝德扬, 薛花, 等. 计及云图和混沌特性的光伏功率组合预测方法[J]. 太阳能学报, 2023, 44(12): 74-81.
WANG Y F, HAO D Y, XUE H, et al.Combined forecasting approach of photovoltaic power based on cloud images and chaotic characteristics[J]. Acta energiae solaris sinica, 2023, 44(12): 74-81.
[2] 刘源延, 孔小兵, 马乐乐, 等. 基于小波包变换与深度学习的超短期光伏功率预测[J]. 太阳能学报, 2024, 45(5): 537-546.
LIU Y Y, KONG X B, MA L L, et al.Ultra-short-term photovoltaic power forecasting based on wavelet packet transform and deep learning[J]. Acta energiae solaris sinica, 2024, 45(5): 537-546.
[3] 王东风, 刘婧, 黄宇, 等. 结合太阳辐射量计算与CNN-LSTM组合的光伏功率预测方法研究[J]. 太阳能学报, 2024, 45(2): 443-450.
WANG D F, LIU J, HUANG Y, et al.Photovoltaic power prediction method combinating solar radiation calculation and CNN-LSTM[J]. Acta energiae solaris sinica, 2024, 45(2): 443-450.
[4] 魏亮, 朱婷婷, 过奕任, 等. 基于DAR-CapsNet的地基云图云分类[J]. 太阳能学报, 2023, 44(11): 189-195.
WEI L, ZHU T T, GUO Y R, et al.Cloud classification of ground-based cloud images based on DAR-CapsNet[J]. Acta energiae solaris sinica, 2023, 44(11): 189-195.
[5] SHI C J, ZHOU Y T, QIU B, et al.CloudU-Net: a deep convolutional neural network architecture for daytime and nighttime cloud images’ segmentation[J]. IEEE Geoscience and remote sensing letters, 2021, 18(10): 1688-1692.
[6] SHI C J, ZHOU Y T, QIU B.CloudU-Netv2: a cloud segmentation method for ground-based cloud images based on deep learning[J]. Neural processing letters, 2021, 53(4): 2715-2728.
[7] SHI C J, ZHOU Y T, QIU B.CloudRaedNet: residual attention-based encoder-decoder network for ground-based cloud images segmentation in nychthemeron[J]. International journal of remote sensing, 2022, 43(6): 2059-2075.
[8] ZHANG Z, YANG S Z, LIU S, et al.Ground-based cloud detection using multiscale attention convolutional neural network[J]. IEEE geoscience and remote sensing letters, 2022, 19: 8019605.
[9] 方明, 张利箭. 一种基于决策融合策略的全天空地基云图云量估计方法[J]. 太阳能学报, 2023, 44(10): 245-254.
FANG M, ZHANG L J.Cloud cover estimation method of all-sky ground-based cloud image based on decision fusion strategy[J]. Acta energiae solaris sinica, 2023, 44(10): 245-254.
[10] LIU S, ZHANG J F, ZHANG Z, et al.Integration transformer for ground-based cloud image segmentation[J]. IEEE transactions on geoscience and remote sensing, 2023, 61: 5606712.
[11] SHI C J, SU Z B, ZHANG K, et al.CloudFU-Net: a fine-grained segmentation method for ground-based cloud images based on an improved encoder-decoder structure[J]. IEEE transactions on geoscience and remote sensing, 2024, 62: 5619913.
[12] SHI C J, SU Z B, ZHANG K, et al.CloudSwinNet: a hybrid CNN-transformer framework for ground-based cloud images fine-grained segmentation[J]. Energy, 2024, 309: 133128.
[13] YE L, CAO Z G, XIAO Y, et al.Supervised fine-grained cloud detection and recognition in whole-sky images[J]. IEEE transactions on geoscience and remote sensing, 2019, 57(10): 7972-7985.
[14] CAO H, WANG Y Y, CHEN J, et al.Swin-Unet: unet-like pure transformer for medical image segmentation[C]//Computer Vision-ECCV 2022 Workshops. Cham, Switzed and, Springer, 2023: 205-218.
[15] TANG Y H, HAN K, GUO J Y, et al. GhostNetV2: enhance cheap operation with long-range attention[EB/OL].2022: arXiv: 2211.12905. https://arxiv.org/abs/2211.12905
[16] 张臻, 陈天鹏, 王磊, 等. 基于地基云图的超短期太阳辐照预测方法与装置研究[J]. 太阳能学报, 2023, 44(1): 133-140.
ZHANG Z, CHEN T P, WANG L, et al.Research on ultra-short-term solar irradiance prediction method and devicebased on ground-based cloud images[J]. Acta energiae solaris sinica, 2023, 44(1): 133-140.
[17] 石超君, 李星宽, 张珂, 等. 地基云图分割方法研究进展[J]. 计算机工程与应用, 2023, 59(13): 1-16.
SHI C J, LI X K, ZHANG K, et al.Research progress of ground cloud image segmentation method[J]. Computer engineering and applications, 2023, 59(13): 1-16.
[18] 朱婷婷. 基于地基云图的太阳直接辐照度超短期预测研究[D]. 南京: 东南大学, 2019.
ZHU T T.Research on inter-hour forecast of direct normal irradiance based on ground-based cloud images[D]. Nanjing: Southeast University, 2019.
[19] ZHOU Z W, SIDDIQUEE M M R, TAJBAKHSH N, et al. UNet: redesigning skip connections to exploit multiscale features in image segmentation[J]. IEEE transactions on medical imaging, 2020, 39(6): 1856-1867.
[20] RONNEBERGER O, FISCER P, BROX T.Attention U-Net: learning where to look for the pancreas[C]// 2018 Medical Image Computing and Computer-Assisted Intervention. Madrid, Spain, 2018.
[21] XIE E Z, WANG W H, YU Z D, et al. SegFormer: simple and efficient design for semantic segmentation with transformers [EB/OL].2021: arXiv: 2105.15203. https://arxiv.org/abs/2105.15203
[22] SUN K, XIAO B, LIU D, et al.Deep high-resolution representation learning for human pose estimation[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA, 2020: 5686-5696.
PDF(3949 KB)

Accesses

Citation

Detail

Sections
Recommended

/