WIND TURBINE FAULT WARNING SYSTEM BASED ON CYCLIC DBSMOTE AND MULTI-HEAD SELF-ATTENTION MECHANISM

Qi Fangzhong, Cai Ruanhao, Cao Jian

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (11) : 772-782.

PDF(2520 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2520 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (11) : 772-782. DOI: 10.19912/j.0254-0096.tynxb.2025-0109

WIND TURBINE FAULT WARNING SYSTEM BASED ON CYCLIC DBSMOTE AND MULTI-HEAD SELF-ATTENTION MECHANISM

  • Qi Fangzhong1,2, Cai Ruanhao1, Cao Jian1
Author information +
History +

Abstract

This study proposes a hybrid fault early-warning model and architecture for wind turbines, integrating the advantages of traditional convolutional neural networks (CNN) and long short-term memory networks (LSTM), coupled with a cyclic DBSMOTE algorithm and a multi-head attention mechanism. First, a cyclic DBSMOTE algorithm is developed to balance highly imbalanced wind turbine operational datasets, mitigating the bias caused by extreme class distribution. In the hybrid early-warning model, CNN and LSTM are employed to extract spatial and temporal features from the balanced data, respectively, enhancing the depth of data mining. Additionally, a multi-head attention mechanism is introduced to prioritize critical temporal-spatial correlations, significantly improving the model’s training accuracy and early-warning performance. Through hyperparameter optimization, the model achieves fault early-warning capabilities with a lead time of up to 32 hours in experimental validation. Further validation via ablation studies, comparative experiments, and ten-fold cross-validation demonstrates that the proposed hybrid model exhibits superior effectiveness and stability in wind turbine fault early warning.

Key words

wind turbines / fault early warning / deep learning / cyclic DBSMOTE / multi-Head self-attention mechanism

Cite this article

Download Citations
Qi Fangzhong, Cai Ruanhao, Cao Jian. WIND TURBINE FAULT WARNING SYSTEM BASED ON CYCLIC DBSMOTE AND MULTI-HEAD SELF-ATTENTION MECHANISM[J]. Acta Energiae Solaris Sinica. 2025, 46(11): 772-782 https://doi.org/10.19912/j.0254-0096.tynxb.2025-0109

References

[1] HUTCHINSON M, ZHAO F. Global wind report2023[R]. GWR23, 2023.
[2] 谷晓娇, 陈长征. 基于VMD和QPSO-SR的风力发电机轴承故障提取方法[J]. 太阳能学报, 2019, 40(10): 2946-2952.
GU X J, CHEN C Z.Fault extraction method of wind turbine bearing based on VMD and QPSO-SR[J]. Acta energiae solaris sinica, 2019, 40(10): 2946-2952.
[3] LIAN J J, CAI O, DONG X F, et al.Health monitoring and safety evaluation of the offshore wind turbine structure: a review and discussion of future development[J]. Sustainability, 2019, 11(2): 494.
[4] LECUN Y, BENGIO Y, HINTON G.Deep learning[J]. Nature, 2015, 521(7553): 436-444.
[5] CASTELLANI F, ASTOLFI D, NATILI F.SCADA data analysis methods for diagnosis of electrical faults to wind turbine generators[J]. Applied sciences, 2021, 11(8): 3307.
[6] 丁显, 韩宁宁, 滕伟. 基于深度学习的直驱风力发电机故障辨识[J]. 可再生能源, 2018, 36(10): 1535-1540.
DING X, HAN N N, TENG W.Fault identification of direct drive wind turbine based on deep learning[J]. Renewable energy resources, 2018, 36(10): 1535-1540.
[7] 刘家瑞, 杨国田, 杨锡运. 基于深度卷积自编码器的风力发电机故障预警方法研究[J]. 太阳能学报, 2022, 43(11): 215-223.
LIU J R, YANG G T, YANG X Y.Research on wind turbine fault warning method based on deep convolution auto-encoder[J]. Acta energiae solaris sinica, 2022, 43(11): 215-223.
[8] 郭俊锋, 王淼生, 孙磊, 等. 基于生成对抗网络的滚动轴承不平衡数据集故障诊断新方法[J]. 计算机集成制造系统, 2022, 28(9): 2825-2835.
GUO J F, WANG M S, SUN L, et al.New method of fault diagnosis for rolling bearing imbalance data set based on generative adversarial network[J]. Computer integrated manufacturing systems, 2022, 28(9): 2825-2835.
[9] 李慧芳, 徐光浩, 黄双喜. 基于主动生成式过采样和深度堆叠网络的轴承故障诊断[J]. 计算机集成制造系统, 2023, 29(1): 146-159.
LI H F, XU G H, HUANG S X.Active generative oversampling and deep stacking network based bearing fault diagnosis approach[J]. Computer integrated manufacturing systems, 2023, 29(1): 146-159.
[10] BUNKHUMPORNPAT C, SINAPIROMSARAN K, LURSINSAP C.DBSMOTE: density-based synthetic minority over-sampling TEchnique[J]. Applied intelligence, 2012, 36(3): 664-684.
[11] 王朋飞, 刘长良, 徐健, 等. 基于图注意力和时间卷积网络的风电齿轮箱故障预警方法[J]. 电子测量与仪器学报, 2023, 37(8): 204-213.
WANG P F, LIU C L, XU J, et al.Wind turbine gearbox fault warning method based on graph attention and temporal convolutional network[J]. Journal of electronic measurement and instrumentation, 2023, 37(8): 204-213.
[12] 黄荣舟, 汤宝平, 杨燕妮, 等. 基于长短时记忆网络融合SCADA数据的风电齿轮箱状态监测[J]. 太阳能学报, 2021, 42(1): 235-239.
HUANG R Z, TANG B P, YANG Y N, et al.Condition monitoring of wind turbine gearbox based on LSTM neural network fusing SCADA data[J]. Acta energiae solaris sinica, 2021, 42(1): 235-239.
[13] CHEN H S, LIU H, CHU X N, et al.Anomaly detection and critical SCADA parameters identification for wind turbines based on LSTM-AE neural network[J]. Renewable energy, 2021, 172: 829-840.
[14] 赵小强, 张亚洲. 利用改进卷积神经网络的滚动轴承变工况故障诊断方法[J]. 西安交通大学学报, 2021, 55(12): 108-118.
ZHAO X Q, ZHANG Y Z.Improved CNN-based fault diagnosis method for rolling bearings under variable working conditions[J]. Journal of Xi’an Jiaotong University, 2021, 55(12): 108-118.
[15] 向玲, 王朋鹤, 李京蓄. 基于CNN-LSTM的风力发电机异常状态检测[J]. 振动与冲击, 2021, 40(22): 11-17.
XIANG L, WANG P H, LI J X.Abnormal state detection of wind turbines based on CNN-LSTM[J]. Journal of vibration and shock, 2021, 40(22): 11-17.
[16] KONG Z Q, TANG B P, DENG L, et al.Condition monitoring of wind turbines based on spatio-temporal fusion of SCADA data by convolutional neural networks and gated recurrent units[J]. Renewable energy, 2020, 146: 760-768.
[17] 沈涛, 李舜酩. 针对滚动轴承故障的批标准化CNN-LSTM诊断方法[J]. 计算机集成制造系统, 2022, 28(12): 3946-3955.
SHEN T, LI S M.CNN-LSTM method with batch normalization for rolling bearing fault diagnosis[J]. Computer integrated manufacturing systems, 2022, 28(12): 3946-3955.
[18] 王进花, 韩金玉, 曹洁, 等. 基于AM和CNN的多级特征融合的风力发电机轴承故障诊断方法[J]. 太阳能学报, 2024, 45(5): 51-61.
WANG J H, HAN J Y, CAO J, et al.Fault diagnosis method of wind turbine bearing based on AM and CNN multi-level feature fusion[J]. Acta energiae solaris sinica, 2024, 45(5): 51-61.
[19] 谭启瑜, 马萍, 张宏立, 等. 基于图注意力网络的风力发电机齿轮箱故障诊断[J]. 太阳能学报, 2024, 45(1): 265-274.
TAN Q Y, MA P, ZHANG H L, et al.Fault diagnosis for wind turbine gearbox based on graph attention networks[J]. Acta energiae solaris sinica, 2024, 45(1): 265-274.
[20] 文靖杰, 王勇, 李金龙, 等. 多头自注意力机制的Faster R-CNN目标检测算法[J]. 现代电子技术, 2024, 47(7): 8-16.
WEN J J, WANG Y, LI J L, et al.Faster R-CNN object detection algorithm based on multi-head self-attention mechanism[J]. Modern electronics technique, 2024, 47(7): 8-16.
[21] 张玉彦, 张永奇, 孙春亚, 等. 不平衡样本下基于生成式对抗网络的风机叶片开裂状态识别[J]. 计算机集成制造系统, 2023, 29(2): 532-543.
ZHANG Y Y, ZHANG Y Q, SUN C Y, et al.Identification method of cracking state of wind turbine blade based on GAN under imbalanced samples[J]. Computer integrated manufacturing systems, 2023, 29(2): 532-543.
[22] PAPPAS C, KOVAIOS S, MORALIS-PEGIOS M, et al.Programmable Tanh-, ELU-, Sigmoid-, and Sin-based Nonlinear Activation Functions for Neuromorphic Photonics[J]. IEEE journal of selected topics in quantum electronics, 2023, 29(6): 6101210.
[23] CHUNG J Y, GULCEHRE C, CHO K-G, et al.Empirical evaluation of gated recurrent neural networks on sequence modeling[C]//In Proceedings of the 2014 Neural Information Processing Systems(NeurIPS 2014) Deep Learning and Representation Learning Workshop (NeurIPS 2014). Montréal, Canada, 2014.
[24] 熊红林, 樊重俊, 赵珊, 等. 基于多尺度卷积神经网络的玻璃表面缺陷检测方法[J]. 计算机集成制造系统, 2020, 26(4): 900-909.
XIONG H L, FAN C J, ZHAO S, et al.Glass surface defect detection method based on multiscale convolution neural network[J]. Computer integrated manufacturing systems, 2020, 26(4): 900-909.
[25] VASWANI A, SHAZEER N, PARMAR N, et al.Attention is all you need[C]//Advances in Neural Information Processing Systems 30 (NeurIPS 2017). Long Beach, California, USA, 2017: 5998-6008.
PDF(2520 KB)

Accesses

Citation

Detail

Sections
Recommended

/