CONSIDERATION METHOD OF FOUNDATION DAMPING IN INTEGRATED TIME-DOMAIN ANALYSIS OF OFFSHORE WIND TURBINES

Ji Weidong, Qi Tao, Yan Ruiyang, Li Rongfu, Guo Peng, Zhang Youhu

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (10) : 774-782.

PDF(6594 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(6594 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (10) : 774-782. DOI: 10.19912/j.0254-0096.tynxb.2025-0607

CONSIDERATION METHOD OF FOUNDATION DAMPING IN INTEGRATED TIME-DOMAIN ANALYSIS OF OFFSHORE WIND TURBINES

  • Ji Weidong1, Qi Tao1, Yan Ruiyang1, Li Rongfu1, Guo Peng2, Zhang Youhu2
Author information +
History +

Abstract

This paper proposes an improved centralized damping method: applying a damping matrix at the equivalent rotational center of the monopile. The equivalent rotational center serves as a "decoupling point" for the monopile foundation, addressing the coupling issue in the stiffness matrix at the mudline that complicates rotational damping coefficient calculations based on apparent rotational stiffness. First, the formulas for calculating the damping ratio of the pile-soil interaction system and the position of the equivalent rotational center are derived. Then, this improved method is incorporated into the integrated time-domain analysis of offshore wind turbines by developing the SoilDyn module in OpenFAST. Finally, the validity of the improved centralized damping method is verified by comparing it with distributed damping results under the same load conditions.

Key words

offshore wind turbines / large diameter monopile / foundation damping / time-domain analysis

Cite this article

Download Citations
Ji Weidong, Qi Tao, Yan Ruiyang, Li Rongfu, Guo Peng, Zhang Youhu. CONSIDERATION METHOD OF FOUNDATION DAMPING IN INTEGRATED TIME-DOMAIN ANALYSIS OF OFFSHORE WIND TURBINES[J]. Acta Energiae Solaris Sinica. 2025, 46(10): 774-782 https://doi.org/10.19912/j.0254-0096.tynxb.2025-0607

References

[1] GUPTA B K, BASU D.Offshore wind turbine monopile foundations: design perspectives[J]. Ocean engineering, 2020, 213: 107514.
[2] SURYASENTANA S K, LEHANE B M.Updated CPT-based p-y formulation for laterally loaded piles in cohesionless soil under static loading[J]. Géotechnique, 2016, 66(6): 445-453.
[3] ZHANG Y H, ANDERSEN K H.Scaling of lateral pile p-y response in clay from laboratory stress-strain curves[J]. Marine structures, 2017, 53: 124-135.
[4] BURD H J, TABORDA D M G, ZDRAVKOVIĆ L, et al. PISA design model for monopiles for offshore wind turbines: application to a marine sand[J]. Geotechnique, 2019, 70(11): 1048-1066.
[5] BYRNE B W, HOULSBY G T, BURD H J, et al.PISA design model for monopiles for offshore wind turbines: application to a stiff glacial clay till[J]. Geotechnique, 2019, 70(11): 1030-1047.
[6] FU D F, ZHANG Y H, AAMODT K K, et al.A multi-spring model for monopile analysis in soft clays[J]. Marine structures, 2020, 72: 102768.
[7] LAI Y Q, WANG L Z, ZHANG Y H, et al.Site-specific soil reaction model for monopiles in soft clay based on laboratory element stress-strain curves[J]. Ocean engineering, 2021, 220: 108437.
[8] WANG H, LEHANE B M, BRANSBY M F, et al.A simple rotational spring model for laterally loaded rigid piles in sand[J]. Marine structures, 2022, 84: 103225.
[9] BISOI S, HALDAR S.3D modeling of long-term dynamic behavior of monopile-supported offshore wind turbine in clay[J]. International journal of geomechanics, 2019, 19(7): 04019062.
[10] BISOI S, HALDAR S.Dynamic analysis of offshore wind turbine in clay considering soil-monopile-tower interaction[J]. Soil dynamics and earthquake engineering, 2014, 63: 19-35.
[11] BISOI S, HALDAR S.Design of monopile supported offshore wind turbine in clay considering dynamic soil-structure-interaction[J]. Soil dynamics and earthquake engineering, 2015, 73: 103-117.
[12] ONG M C, LI H, LEIRA B J, et al.Dynamic analysis of offshore monopile wind turbine including the effects of wind-wave loading and soil properties[C]//ASME 2013 32nd international conference on ocean, offshore and Arctic engineering, June 9-14, 2013, Nantes, France. 2013
[13] WANG P G, ZHAO M, DU X L, et al.Wind, wave and earthquake responses of offshore wind turbine on monopile foundation in clay[J]. Soil dynamics and earthquake engineering, 2018, 113: 47-57.
[14] PARK G, YOU D, OH K Y, et al.Natural frequency degradation prediction for offshore wind turbine structures[J]. Machines, 2022, 10(5): 356.
[15] GRAVETT D, MARKOU G.State-of-the-art investigation of wind turbine structures by considering the soil-structure interaction phenomenon[J]. 8th international conference on computational methods in structural dynamics and earthquake engineering methods in structural dynamics and earthquake engineering, 2021: 4993-5004.
[16] ALKHOURY P, SOUBRA A H, REY V, et al.A full three-dimensional model for the estimation of the natural frequencies of an offshore wind turbine in sand[J]. Wind energy, 2021, 24(7): 699-719.
[17] 杨思阳, 陈前, 王瑞良, 等. 海上单桩风力发电机组载荷-基础全工况一体化设计[J]. 太阳能学报, 2024, 45(3): 83-89.
YANG S Y, CHEN Q, WANG R L, et al.Integrated design of load-foundation considering all external conditions for offshore monopile wind turbine[J]. Acta energiae solaris sinica, 2024, 45(3): 83-89.
[18] 张承婉, 龙凯, 陆飞宇, 等. 海上风电机组支撑结构一体化设计方法[J]. 太阳能学报, 2024, 45(6): 646-651.
ZHANG C W, LONG K, LU F Y, et al.Integerated design method of supporting structure for offshore wind turbine[J]. Acta energiae solaris sinica, 2024, 45(6): 646-651.
[19] 陈俊岭, 赵邦州, 阳荣昌. 基于FAST的风电机组塔架耦合振动研究[J]. 太阳能学报, 2023, 44(10): 353-361.
CHEN J L, ZHAO B Z, YANG R C.Research on coupling vibration of wind turbine tower based on FAST[J]. Acta energiae solaris sinica, 2023, 44(10): 353-361.
[20] JUNG S, KIM S R, PATIL A, et al.Effect of monopile foundation modeling on the structural response of a 5 MW offshore wind turbine tower[J]. Ocean engineering, 2015, 109: 479-488.
[21] KRATHE V L, KAYNIA A M.Implementation of a non-linear foundation model for soil-structure interaction analysis of offshore wind turbines in FAST[J]. Wind energy, 2017, 20(4): 695-712.
[22] YANG Y, BASHIR M, LI C, et al.Analysis of seismic behaviour of an offshore wind turbine with a flexible foundation[J]. Ocean engineering, 2019, 178: 215-228.
[23] YANG Y, LI C, BASHIR M, et al.Investigation on the sensitivity of flexible foundation models of an offshore wind turbine under earthquake loadings[J]. Engineering structures, 2019, 183: 756-769.
[24] FONTANA C M, CARSWELL W, ARWADE S R, et al.Sensitivity of the dynamic response of monopile-supported offshore wind turbines to structural and foundation damping[J]. Wind engineering, 2015, 39(6): 609-627.
[25] AASEN S, PAGE A M, SKJOLDEN SKAU K, et al.Effect of foundation modelling on the fatigue lifetime of a monopile-based offshore wind turbine[J]. Wind energy science, 2017, 2(2): 361-376.
[26] REZAEI R, FROMME P, DUFFOUR P.Fatigue life sensitivity of monopile-supported offshore wind turbines to damping[J]. Renewable energy, 2018, 123: 450-459.
[27] LINDE Ø M, SAELAND M K.Estimating modal damping due to hysteric soil behaviour and its effect on fatigue response of offshore wind structures on jackets and monopiles[D]. Oslo: NTNU, 2022.
[28] CARSWELL W, ARWADE S R, JOHANSSON J, et al.Influence of foundation damping on offshore wind turbine monopile design loads[J]. Marine structures, 2022, 83: 103154.
[29] CARSWELL W, JOHANSSON J, LØVHOLT F, et al. Foundation damping and the dynamics of offshore wind turbine monopiles[J]. Renewable energy, 2015, 80: 724-736.
[30] ZHANG Y H, CHEN J B, HU S, et al.Hysteretic damping of soils for well conductor fatigue analysis[J]. Marine structures, 2023, 89: 103392.
[31] ZHANG Y H, AAMODT K K, KAYNIA A M.Hysteretic damping model for laterally loaded piles[J]. Marine structures, 2021, 76: 102896.
[32] GUO P, LING H W, ZHANG Y H, et al.Modelling of foundation damping in time-domain analysis of monopile supported offshore wind turbine structures[J]. Marine structures, 2024, 98: 103672.
[33] GAERTNER E, RINKER J, SETHURAMAN L, et al.IEA wind TCP task 37: definition of the IEA 15 MW offshore reference wind turbine[R]. NREL/TP-5000-75698, 2020.
[34] INSTITUTE A P.API RP 2GEO Geotechnical and foundation design considerations[M]. Washington, DC, USA: 2011.
[35] Wind energy generation systems-part 3-1: design requirements for fixed offshore wind turbines: DS/EN IEC 61400-3-1:2019[S].
PDF(6594 KB)

Accesses

Citation

Detail

Sections
Recommended

/